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Overview

Molecular Profiling

Gene Expression and Microarray Technology

Computational Challenges

The Rosetta Resolver System

Beyond Textbooks

Data-Driven Knowledge Discoveries

Bring Data back to Biology
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Molecular Profiling - A System Biology Approach
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Industrialization of Molecular Biology

New high-throughput data-acquisition technologies have fundamentally
changed the way to study biology
» Genome-wide DNA sequencing
» Microarrays for gene expression
» LC/MS-based protein expression analysis
» Large-scale molecular profiling becomes possible

Numerical computing is the corner stone of molecular profiling
» More powerful data storage, retrieval and management tools
» New computing methods and environments for data analysis and knowledge
discovery
» New standards for information exchanges

Knowledge discovery = Data integration
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Opportunities in Molecular Profiling

Study Biology as a System
» Genes are not isolated. Groups of genes work together to serve a biological
function. A stimulus will affect many genes.
» Gene expression profiles provide insights to the function of the biological system.

Study Biology as a Collaborative Team Effort
» It has become less and less practical to study a complex biological system by one
or two biologists.
» Systematic data collection and information sharing have become inevitable.

Study Biology as an Industry
» Drug discovery becomes more difficult and costly. It is an enterprise-level effort.
» Drug development requires enterprise solutions in data management, data
analysis, and knowledge discovery.
» These solutions should meet various regulatory requirements, such as FDA 21
CFR Part 11.
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Example: Microarray Technology for Gene Expression Study

Human 50,000 Gene SurePrint™ Microarray
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RNA isolationSample

Rosetta Resolver® System

Hybridization

Scanning and feature extraction

Labeling

Processes in Analyzing Microarray Gene-Expression Data

DNA Microarray
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Example: Compendium Approach to Hepatotoxicity

Gene Index
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50+ Compounds
act as Reference
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Challenges in Molecular Profiling

Large Volume of Data
» Microarray technology generates terabytes of gene expression data.
» How to effectively manage the data? How to make the data available and the
information searchable in an enterprise environment? How to efficiently leverage
available analysis tools on the large data source?

Small Number of Replications
» Limited by available materials and high experiment costs, the number of
replicates in molecular profiling is always very small, if any. Traditional statistical
methods do not work well in this case.

Limited Knowledge
» Need to associate profiles of cellular constituents to help interpret the biological
functions.
» Need to leverage existing biological knowledge in discovering new knowledge
from the data.
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Rosetta Resolver® System: An Enterprise Solution for Gene Expressions

Rosetta Resolver Server
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Rosetta Resolver® System v3.2

Enterprise solution to:

» Compile gene expression information from a wide variety of
technologies in a central repository.

» Share information and analysis results collaboratively throughout the
organization.

» Perform large-scale intensity- and ratio-based analyses that leverage
entire gene expression databases.

» Publish and exchange data with collaborators in GEML™ and MAGE
formats for visualization and analysis in the Rosetta Resolver system
and other software applications.
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ROAST is analogous to BLAST for expression profile similarity searching. Use ROAST to
search for co-regulated sequences, reporters, exons or UniGenes, as well as similar
experiments.

Correlation between gene
expression experiments

may indicate similar
mechanisms of toxicity

between known and
unknown compounds.

Example: Rosetta Array Search Tool - ROAST
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A Million-Dollar Question: Which Genes are Differentially Expressed?

Limitations of Fold-Change Method
» Biologists often use 2-fold change as the threshold to detect differential
expressions.
» It suffers in low sensitivity and low specificity because it does not consider the
error of the measurement.

Limitations of Traditional Statistical Tests
» Textbook t-test or ANOVA test do not work well when the number of replicated
experiments is small.

Solutions: Rosetta Resolver Error Models
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Beyond Textbooks: Error Models in the Rosetta Resolver® System

Error Models
» Technology-specific error models are used to estimate microarray measurement
errors.
» The Rosetta Resolver system leverages the error models together with
experimental replicates to compute accurate P-values and error bars for every
gene expression measurement.

Benefits
» Error models help to reliably estimate variance when the number of replicates is
small.
» Error models provide continued quality control in data analysis.
» P-values and error bars are propagated and leveraged throughout the analysis,
adding additional predictive power to cluster analysis, similarity searching, trend
analysis, etc.
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Example: Error Model Estimates Expression Measurement Error
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Example: Error Model Benefits in Ratio Analysis

Which up/downregulations are statistically significant?
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Example: Error Model Benefits in Ratio Analysis
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Example: Error Model Benefits in ANOVA Tests

Treatment
A (2 chips)

Treatment B
(1 chip)

Treatment C
(2 chips)
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Compare the power of the textbook ANOVA and the improved ANOVA in
terms of sensitivity and specificity

Sensitivity Test: Treatment A and B from the same RNA
and C from different RNA
Specificity Test: Treatment A, B and C all from the
same RNA
Chips: Affymetrix U95A
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Example: Error Model Benefits in ANOVA Tests

For given threshold P-value<0.01, the improved ANOVA in the Rosetta
Resolver System provides much lower false positive rate (better
specificity) and much higher detection rate (better sensitivity) than the
textbook ANOVA.

Analysis methods False Positive rate Detection rate
Textbook ANOVA 0.0093 0.17
Improved ANOVA 0.00048 0.30
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Data-Driven Knowledge Discoveries

Unsupervised Learning Methods
» Discover new knowledge by data associations based on similarities.
» Clustering tools in the Rosetta Resolver system: agglomerative, divisive, k-mean,
SOM, pattern grow, et al.

Supervised Learning Methods
» Discover new knowledge by training.
» Classification tools in the Rosetta Resolver system: Bayesian classifier, et al.



>  March 10, 2003  >  PAGE 22

Example: An Unsupervised Learning Case Study

» Rosetta and Abbott Laboratories collaboration:  Toxicogenomics
Waring, et al. Toxicology & Applied Pharmacology 175, 28-42 (2001)
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Cyclin D1 & Bax - up
regulated signature
genes by treatment
with DNA-damaging
diethylnitrosamine
and monocrotaline.

Cluster: Aroclor1254 and 3-methylcholanthrene - Both compounds are aromatic hydrocarbons
that have similar mechanisms of toxicity.

Cluster: Allyl Alcohol and Carbon tetrachloride  - Both compounds cause cell injury by free
radical formation; co-regulated signature genes include genes involved in oxidation.

CYP1A1 & CYP1B1 -
regulated signature
genes by treatment
with Aroclor1254 and
3-methylcholanthrene.

Toxicogenomics Signatures



>  March 10, 2003  >  PAGE 24

These experiments share a certain geneset response

Global vs. Local Similarities
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Global vs. Local Similarities :  The GROW Algorithm
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Example: A Supervised Learning Case Study

» Rosetta and Netherlands Cancer Institute (NKI) collaboration:  Breast
Cancer
van ‘t Veer, et al., Nature 415, 530-536 (2002)
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Profile RNA samples from 98 breast tumors
» 44 with >5 years disease-free survival
» 34 with <5 years disease-free survival
» 20 with BRCA1 germ-line mutations

All samples carefully selected:
» Patient age < 55 years
» Tumor size < 5 cm; no lymph node involvement
» Samples well annotated

Objectives:
» Identify patterns of gene expression that correlate with prognosis
» Confirm results with a new set of 19 similar breast tumors

Can Gene Expression Profiling be Used to Predict Clinical Outcome
in Breast Cancer Patients?
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Unsupervised Clustering Divides Tumors into “Good Prognosis” and
“Poor Prognosis” Tumors
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Poor: 66% metastatic < 5 yrs

Good: 38% metastatic < 5 yrs
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Classifier Concept

“Is this unknown profile most likely a member of the metastasis class (A) or the
non-metastasis class (B)?”

Classifier Training and Testing Classification/Prediction

Class A
Profiles

Class B
Profiles

Gene
Selection

Gene 1
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Unknown
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Training
Data
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Steps for Developing a Classifier

» Select and rank features

» Optimize the number of reporter genes

» Evaluate the power of classifier

Leave-one-out cross-validation for
defining optimal Classifier

Define reporter genes that predict
distant metastases

Independent validation set of 19
tumors
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Define Reporter Genes that Predict Distant Metastases

Red curve:
Histogram of correlation coefficients

of genes with prognostic category
(metastasis group versus no-

metastasis group)

Blue curve:
Histogram of correlation coefficients
of genes with prognosis from Monte
Carlo analysis, where the metastasis
designations have been randomized

# 
of
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es 231 genes with 
prognostic category 
red curve to r <- 0.3 &
red curve to r > 0.3

- 0.3 0.3
(r)
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Optimize the Number of Reporter Genes Using Leave-One-Out Cross
Validations

70 genes with minimum total error
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Supervised Classification Prognosis: Leave-One-Out Method 
for Defining Optimal Classifier

threshold

rankorder

metastases

good
signature

poor
signature

3 false negative

12 false positive
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70 Prognostic Marker Genes

Sensitivity 90%
Error rate 19% 
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•Cell cycle: Cyclins, DNA replication 
Checkpoint proteins

•Invasion, metastasis: (Metallo)proteinases
•Angiogenesis: VEGF Receptor
•Signal transduction: IGFBPs, Kinases
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Functional Classes of Prognosis Reporter Genes
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Classification of Set of 19 Tumors Using Prognosis Reporter Genes

only 2/19 tumors were misclassified:
90% accuracy, Fisher’s exact p=0.0018

threshold

rankorder

metastases
70 Prognostic Marker Genes
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Patients grouped by
microarray-defined
prognosis reporters

Patients grouped by
Estrogen Receptor

status

Microarray Reporters Predict Prognosis Better than Clinical Markers
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Profiling in Clinical Practice: Selection for Adjuvant Chemotherapy

  Selection criteria:

  St. Gallen consensus       64/78 (82%)      33/34 (97%)           31/44 (70%)

  NIH-consensus     72/78 (92%)      32/34 (94%)           40/44 (91%)

  Prognosis profile    43/78 (55%)      31/34 (91%)           12-18/44

        (27%-41%)

Total patient
group (n=78)

Metastatic disease
< 5 years (n=34)

Disease free at
>5 years (n=44)

Breast cancer patients eligible for adjuvant systemic therapy
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Profiling in Clinical Practice: Conclusions

Expression profiling:

» selects patients that should receive adjuvant therapy similarly to
conventional criteria.

» can significantly reduce the number of patients who would receive
adjuvant therapy unnecessarily.

Even small tumors are already programmed to metastatic phenotype.
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A Final Remark: Never Forget Bringing Data back to Biology

Visualize gene
expression data
in the context of
your favorite
pathways.

Download publicly
available pathway
maps or create your
own.
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The Future of Computational Biology: Can We Find It on This Map?

Never underestimate
the complexity of a
simple biological
system.

Example:
A metabolic pathway
map
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Conclusions

New data acquisition technologies, such as DNA microarrays, have made
molecular profiling possible. They also have created strong demands for
better computational tools and systems.

To support the industrialization in molecular biology, enterprise solutions,
such as the Rosetta Resolver system, have been engineered to meet the
strong demand.

With these solutions, biologists can answer many challenging questions
during molecular profiling. Many data-driven computational methods help
biologists gain new knowledge in pharmaceutical and other bio-technology
research areas.


