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ABSTRACT
Query expansion is a successful approach for improving In-
formation Retrieval effectiveness. This work focuses on pseu-
do-relevance feedback (PRF) which provides an automatic
method for expanding queries without explicit user feedback.
These techniques perform an initial retrieval with the origi-
nal query and select expansion terms from the top retrieved
documents. We propose two linear methods for pseudo-
relevance feedback, one document-based and another term-
based, that models the PRF task as a matrix decomposition
problem. These factorizations involve the computation of
an inter-document or inter-term similarity matrix which is
used for expanding the original query. These decomposi-
tions can be computed by solving a least squares regression
problem with regularization and a non-negativity constraint.
We evaluate our proposals on five collections against state-
of-the-art baselines. We found that the term-based formula-
tion provides high figures of MAP, nDCG and robustness in-
dex whereas the document-based formulation provides very
cheap computation at the cost of a slight decrease in effec-
tiveness.

CCS Concepts
•Information systems → Information retrieval; In-
formation retrieval query processing; Query refor-
mulation; Retrieval models and ranking;

Keywords
Information retrieval; linear methods; pseudo-relevance feed-
back; query expansion; linear least squares

1. INTRODUCTION
Two natural ways of approaching the enhancing of retrieval
effectiveness are by improving the retrieval model or by mod-
ifying the query prompted by the user. In this paper, we
focus on the latter: how to alter the original query to obtain
a better rank. Query expansion techniques aim to add new
terms to the query. This expanded query is expected to pro-
vide better retrieval results than the initial one. Relevance
feedback is one of the most reliable types of query expan-

Copyright is held by the authors. This work is based on an earlier work: SAC’18
Proceedings of the 2018 ACM Symposium on Applied Computing, Copyright
2018 ACM 978-1-4503-5191-1. http://dx.doi.org/10.1145/3167132.3167207

sion methods, but it requires users to indicate which docu-
ments from those retrieved with the original query are rele-
vant [29]. An alternative method for expanding the queries
which does not need interaction from the user is pseudo-
relevance feedback (PRF). This approach is based on the
assumption that the top documents retrieved are relevant.
From these pseudo-relevant documents (which form the so-
called pseudo-relevant set), PRF techniques extract terms
(with their corresponding weights) to expand the original
query. This assumption is not too strong if the retrieval
model provides decent results. In fact, research has shown
that PRF is one the most effective techniques to improve
the retrieval quality [28, 27, 8, 26, 4, 13, 6, 14, 15, 21, 16,
23, 41].

The language modeling framework is a fertile area of re-
search for PRF techniques [15, 32, 16]. However, in this
article, we propose a novel framework for the PRF task
which is not based on language models, but in linear meth-
ods, which we call LiMe. In particular, we propose two
modelings of the PRF task as matrix decomposition prob-
lems called DLiMe (Document-based Linear Methods) and
TLiMe (Term-based Linear Methods). LiMe framework and
the TLiMe model were first presented in our previous arti-
cle [39]. In this work, we extend the LiMe framework by
proposing DLiMe.

RFMF was the first formulation of PRF as a matrix decom-
position problem [41] and computes a latent factor represen-
tation of documents/queries and terms using non-negative
matrix factorization. In contrast, in this manuscript, we
propose a different decomposition that stems from the com-
putation of inter-document or inter-term similarities. Pre-
vious work on translation models has exploited this concept
of inter-term similarities [2, 12]; however, to the best of our
knowledge, no state-of-the-art PRF approach directly lever-
ages inter-document or inter-term similarities. Our matrix
formulations enable to compute these similarities that yield
within the query and the pseudo-relevant set. We use the in-
formation of these relationships between documents or terms
to expand the original query.

Since producing a good rank of expansion terms is critical for
a successful PRF technique, the modeling of inter-term sim-
ilarities seems to be a desirable property. Additionally, com-
puting good weights for those expansion terms is a critical
factor in the performance of a PRF technique. We also think
that modeling the relationship between pseudo-relevant doc-
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uments can be a faster way to produce expansion terms be-
cause the number of documents is much smaller than the
number of terms in the pseudo-relevant set. In fact, our ex-
periments show that the computation of inter-term similar-
ities produces high-quality rankings of expansion terms and
weights. In contrast, our proposal based on inter-document
similarities is computationally very cheap at the expense of
slightly worse expansion terms.

As [41] showed, an advantage of addressing PRF as a matrix
decomposition problem is that it admits different types of
features for representing the query and the pseudo-relevant
set. Since these features are independent of the retrieval
model, LiMe is a general framework for PRF that can be
plugged on top of any retrieval engine. Although we can plug
in retrieval-dependent features or a theoretical probabilistic
weighting function into LiMe if desired, we leave those ideas
for future work. In this and previous paper, we explore well-
known and straightforward weighting functions which allow
us to outperform state-of-the-art techniques.

LiMe modeling of the PRF task paves the way for devel-
oping multiple PRF algorithms since the proposed formu-
lations of the matrix decompositions can be calculated in
various ways. In this paper, we use a method based on reg-
ularized linear least squares regression. On the one hand, we
employ a `2 regularization scheme to avoid overfitting. On
the other hand, we use `1 regularization to enforce sparsity
into the learned inter-document or inter-term similarities.
This method provides an automatic feature selection which
gives us a more compact solution with the corresponding ef-
ficiency gains. The combination of `1 and `2 regularization
for linear least squares problems is also known as an elastic
net regression in Statistics [44]. Additionally, we add non-
negativity constraints to force the computed similarities to
be positive to increase the interpretability of the models.

We thoroughly evaluate DLiMe and TLiMe on five TREC
collections. The obtained results show that TLiMe outper-
forms state-of-the-art baselines regarding several common
effectiveness metrics. Moreover, TLiMe achieved high val-
ues of robustness compared to the baselines. These findings
highlight the applicability of TLiMe as a pseudo-relevance
feedback technique. In contrast, DLiMe provides a compu-
tationally cheaper alternative with a slight decrease in effec-
tiveness. It is important to note that LiMe framework can
exploit different features allowing the exploration of further
features schemes.

In summary, the contributions of this paper are DLiMe and
TLiMe, two novel matrix decomposition formulations of the
PRF task involving inter-document and inter-term similar-
ities and an algorithm based on constrained elastic net re-
gression for solving the proposed matrix decompositions and
computing the expansion terms. The empirical evaluation
of the effectiveness of the proposed methods against state-
of-the-art baselines shows that DLiMe and TLiMe are com-
petitive PRF techniques.

2. BACKGROUND
In this section, we first describe pseudo-relevance feedback
(PRF). Then, we focus on state-of-the-art PRF techniques
based on the language modeling framework [24] because they

perform notably well in practice [13, 15, 16, 41]. Afterward,
we introduce previous work on PRF using matrix factoriza-
tion [41]. Finally, we introduce linear methods for regression
problems since our proposal rests on these models.

2.1 Pseudo-Relevance Feedback (PRF)
Query expansion methods aim to add new terms to the orig-
inal query. These techniques can improve the performance
of retrieval models when answering the users’ information
needs. Using true relevance feedback from the user is highly
effective, but also difficult to obtain. Hence, automatic
query expansion techniques, which do not require feedback
from the user, can be beneficial in practice [5]. Given the
utility of these methods, it is not surprising that initial work
on automatic query expansion dates from the sixties [18].
Manifold strategies for approaching this problem have been
developed [5]; however, the foundations of PRF were estab-
lished in the late seventies [8]. Pseudo-relevance feedback
(also known as blind relevance feedback) is a highly effec-
tive strategy to improve the retrieval accuracy without user
intervention [8, 26, 4, 42, 13, 6, 14, 15, 21, 23, 16, 41]. In-
stead of using explicit feedback information from the user,
the top retrieved documents by the user’s original query are
assumed to be relevant. These documents constitute the
pseudo-relevant set. PRF techniques produce an expanded
version of the original query using the information from the
pseudo-relevant set. PRF methods use the expanded query
for a second retrieval, and the results of the second ranking
are presented to the user.

A plethora of strategies for weighting the candidate expan-
sion terms using the pseudo-relevant set information has
been developed. The Rocchio framework [28] was one of the
very early successful methods presented in the context of the
vector space model. Rocchio algorithm modifies the query
vector in a direction which is closer to the centroid of the
relevant documents vectors and further from the centroid of
non-relevant documents vectors. In [4], the authors used this
framework with different term weighting functions including
those based on pseudo-relevant feedback instead of relevance
feedback such as the Binary Independence Model [27], the
Robertson Selection Value [26], the Chi-square method [4]
or the Kullback-Leibler distance method [4].

2.2 PRF based on Language Models
Among all the PRF techniques in the literature, those devel-
oped within the Statistical Language Model framework [24]
are arguably the most prominent ones because of their sound
theoretical foundation and their empirical effectiveness [15].
Within the language modeling framework, documents are
ranked according to the KL divergence D(·‖·) between the
query and the document language models, θQ and θD, which
is rank equivalent to the negative cross-entropy [12]:

Score(D,Q) = −D(θQ‖θD)
rank
=
∑
t∈V

p(t|θQ) log p(t|θD) (1)

where V is the vocabulary of the collection. To obtain better
results, instead of using the original query model θQ, we use
θ′Q which is the result of the interpolation between θQ and
the estimated feedback model θF [1, 15]:

p(t|θ′Q) = (1− α) p(t|θQ) + αp(t|θF ) (2)
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where α ∈ [0, 1] controls the relative importance of the feed-
back model with respect to the query model. Therefore, the
task of a PRF technique under this framework is to provide
an estimate of θF given the pseudo-relevant set F . Next, we
remind two state-of-the-art PRF techniques based on the
language modeling framework [15].

2.2.1 Relevance-Based Language Models
Relevance-based language models or, for short, Relevance
Models (RM) are a state-of-the-art PRF technique that ex-
plicitly introduces the concept of relevance in language mod-
els [13]. Although RM were initially conceived for standard
PRF [13], they have been used in different ways such as the
generation of query variants [6], cluster-based retrieval [14]
or collaborative filtering recommendation [22, 35, 36, 37].

Lavrenko and Croft [13] proposed two models for estimat-
ing the relevance: RM1 (which uses i.i.d. sampling) and
RM2 (based on conditional sampling). We remind solely
RM1 since it has shown to be more effective than RM2 [15].
RM1 estimates can be computed as follows when assuming
uniform document prior probabilities:

p(t|θF ) ∝
∑
D∈F

p(t|θD)
∏
q∈Q

p(q|θD) (3)

where p(t|θD) is the smoothed maximum likelihood estimate
(MLE) of the term t under the language model of the doc-
ument D with Dirichlet priors as the preferred smoothing
technique [42, 13]. RM1 is typically called RM3 when it is
interpolated with the original query (see Eq. 2) [1].

2.2.2 MEDMM
The Maximum-Entropy Divergence Minimization Model (also
known as MEDMM) [16] is a PRF technique based on the
Divergence Minimization Model (DMM) [42] which stems
from the language modeling framework. It is similar to the
Rocchio algorithm from the vector space model if we use
the pseudo-relevant set to compute the relevant documents
vectors and the collection model for the non-relevant docu-
ments vectors [28]. MEDMM aims to find a feedback model
θF which minimizes the distance to the language models of
the documents of the pseudo-relevant set and, at the same
time, maximizes the distance to the collection model θC (the
assumed non-relevant model). This model has a parameter
λ to control the IDF effect and parameter β to control the
entropy of the feedback language model:

θF = arg min
θ

∑
D∈F

αDH(θ, θD)− λH(θF , θC)− β H(θ) (4)

where H(·, ·) denotes the cross entropy and H(·) denotes the
entropy.

MEDMM also gives a weight αD for each document based
on the posterior of the document language model:

αD = p(θD|Q) =
p(Q|θD)∑

D′∈F p(Q|θ′D)
=

∏
t∈Q p(t|θD)∑

D′∈F
∏
t′∈Q p(t

′|θ′D)

(5)
The analytic solution to MEDMM, obtained with Lagrange

multipliers, is given by [16]:

p(t|θF ) ∝ exp

(
1

β

∑
D∈F

αD log p(t|θD)− λ

β
log p(t|θC)

)
(6)

where p(t|θD) is the smoothed MLE of the term t under the
language model θD using additive smoothing with parameter
γ. On the other hand, p(t|θC) represents the MLE of the
term t in the collection. The feedback model computed by
MEDMM is also interpolated with the original query as in
Eq. 2.

2.3 PRF based on Matrix Factorization
Other authors have focused on developing PRF models based
on different ideas. In particular, RFMF was the first tech-
nique that applied matrix factorization to the PRF task [41].
This approach builds a document-term matrix X from the
query and the pseudo-relevant set. They built this matrix
using TF-IDF or weights derived from the language model-
ing framework. RFMF reconstructs, through non-negative
matrix factorization (NMF), the document-term matrix and
use the new weights as a scoring function to rank candi-
dates terms for expansion. This approach is inspired by the
Recommender Systems literature where matrix factorization
techniques are commonplace [11]. RFMF finds the latent
document and term factors with a particular parameter for
the number of dimensions d of the latent factors.

Formally, NMF is a matrix factorization algorithm which de-
composes the matrix X ∈ Rm×n+ in two matrices U ∈ Rm×d+

and V ∈ Rd×n+ such that X ≈ UV . U represents the la-
tent factors of the query and the pseudo-relevant documents
whereas V represents the latent factors of the terms.

2.4 Linear Methods
Linear methods are a simple but successful collection of
techniques that have been used for regression and classi-
fication tasks. Given n features and m data points, ~y =
(y1, . . . , ym)T is the column vector which contains the re-
sponse and ~x1, . . . , ~xn are the m-dimensional vectors that
contains each of the n features of the m observations. A
linear method try to predict the response ~y using a linear
combination of ~x1, . . . , ~xn. The vectors of features can be ar-
ranged in the form of a matrix X of m rows and n columns.
Linear regression aims to find the optimal values of the co-
efficients ~w = (w1, . . . , wn)T that minimize the error ~ε:

~y = X ~w + ~ε = w1 ~x1 + · · ·+ wn ~xn + ~ε (7)

In particular, ordinary linear least squares models try to
find the best approximate solution of this system of linear
equations where the sum of squared differences between the
data and the prediction made by the model serves as the
measure of the goodness of the approximation:

~w∗ = arg min
~w

‖~ε‖22 = arg min
~w

‖~y −X ~w‖22 (8)

Linear least squares loss is strictly convex; thus, it has a
unique minimum. Moreover, the simplicity of the model
favours its explainability and interpretability. However, this
model suffers from overfitting. For tackling this problem, it
is common to add `2 or Tikhonov regularization (this model
is also known as ridge regression in Statistics [9]). Imposing
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a penalty based on the squared `2-norm of the coefficients ~w
produces a shrinking effect which is controlled by the non-
negative parameter β2:

~w∗ = arg min
~w

‖~y −X ~w‖22 + β2 ‖~w‖22 (9)

An alternative strategy to ridge regression is imposing a
penalty based on the `1-norm of the coefficient vector. This
approach is commonly known as lasso regression in Statistics
[34]. This approach performs automatic feature selection as
the value of the non-negative parameter β1 grows:

~w∗ = arg min
~w

‖~y −X ~w‖22 + β1 ‖~w‖1 (10)

Since both, ridge and lasso regressions, have beneficial prop-
erties, Zou and Hastie [44] developed a technique combining
both `1 and `2 regularization: the elastic net, which is a gen-
eralization of ridge and lasso regression. This approach can
perform shrinkage and feature selection at the same time
controlled by the non-negative parameters β1 and β2:

~w∗ = arg min
~w

‖~y −X ~w‖22 + β1 ‖~w‖1 + β2 ‖~w‖22 (11)

3. LIME: LINEAR METHODS FOR PRF
LiMe is designed for ranking the candidate terms for produc-
ing an expanded query Q′. As it is usual in PRF, LiMe uses
only information about the original query Q and the pseudo-
relevant set F . The set F is composed of the top-k docu-
ments retrieved using the original query Q. We should note
that LiMe treats the query as another document. Thus, for
convenience, we define the extended feedback set F ′ as the
pseudo-relevant set plus the original query (F ′ = {Q} ∪ F )
and we denote its cardinality by m = |F ′| = k + 1. We
consider as candidate terms the subset of words from the
collection vocabulary V that appear in F ′. We refer to this
set by VF ′ and we denote its cardinality by n = |VF ′ |.

3.1 LiMe Framework
We can define LiMe using matrix or vector formulation. To
understand better the idea behind LiMe, we initially present
our technique under a matrix formulation. Afterward, we in-
troduce the vector representation which is much more con-
venient for its implementation.

Considering the query as another pseudo-relevant document,
we define the matrix X = (xij) ∈ Rm×n. The first row rep-
resents the original query Q while the rest rows correspond
to the k documents from F . Each column of X corresponds
to a term from VF ′ . Each element xij represents a feature
between the document (or query) corresponding to the i-th
position and the term tj represented with the j-th column
of X. Therefore, each row of X is a sparse feature vector
representing the query or a pseudo-relevant document.

The objective of LiMe is to factorize this matrix X into the
product of itself and another matrix. In the case of TLiMe,
we build an inter-term matrix W = (wij) ∈ Rn×n+ whereas
in the case of DLiMe, we build an inter-document matrix
Z = (zij) ∈ Rm×m+ .

3.1.1 TLiMe Formulation

The matrix W represents the inter-term similarity between
pairs of words in VF ′ . In particular, each entry wij symbol-
izes the similarity between terms ti and tj . To increase the
interpretability of the model, we constrain the similarities
to be non-negative. Moreover, to avoid the trivial solution
(W equal to the identity matrix) we enforce that the main
diagonal of W are all zeros. Formally, we define TLiMe as
an algorithm that computes the following decomposition:

X ≈ XW

s.t.diag(W ) = 0, W ≥ 0
(12)

We formulate this matrix decomposition task as a constrained
linear least squares optimization problem. We want to min-
imize the residual sum of squares of the factorization. Addi-
tionally, to avoid overfitting and to enforce a sparse solution
we apply the elastic net penalty which combines `1 and `2
regularization. In this way, the objective function of LiMe
is the following one:

W ∗ = arg min
W

1

2
‖X −XW‖2F + β1 ‖W‖1,1 +

β2
2
‖W‖2F

s.t. diag(W ) = 0, W ≥ 0

(13)

Note that the matrix `1,1-norm (denoted by ‖·‖1,1) is equiva-
lent to the sum of the `1-norm of the columns. On the other
hand, the squared Frobenius norm (denoted by ‖·‖2F ) is cal-
culated as the sum of the squares of each matrix element
which is equivalent to the sum of the squared `2-norm of
the columns. Using these equivalences between the matrix
and vector norms, we can split this matrix formulation by
columns rewriting the optimization problem in the following
vector form:

~w∗·j = arg min
~w·j

1

2
‖~x·j −X ~w·j‖22 + β1 ‖~w·j‖1 +

β2
2
‖~w·j‖22

s.t. wjj = 0, ~w·j ≥ 0

(14)

where the non-negativity constraint is applied to the ele-
ments of ~w·j vector which is the j-th column of the W ma-
trix. Similarly, ~x·j represents the j-th column of the X ma-
trix. For each term j in VF ′ , we train an elastic net [44]
with an equality constraint to zero in one coefficient and
non-negativity constraints on the rest of the coefficients.

We merge the solutions of the regression problems depicted
in Eq. 14 to build the inter-term similarity matrix W ∗. We
use the computed matrix decomposition to reconstruct the
first row of X (which we will denote by x̂1·) as follows:

x̂1· = ~x1·W
∗ (15)

Note that, by construction, X is a sparse matrix (hence also
the row vector ~x1·) and W ∗ will be a sparse matrix due to
the `1 regularization. Thus, the product between the row
vector ~x1· and the matrix W ∗ is highly efficient. We use
the pseudo-relevant documents for learning the inter-term
similarities, but we reconstruct the first row of X because
we want to expand only the query.

3.1.2 DLiMe Formulation
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The document-based linear method for PRF (DLiMe) is
based on the computation of the matrix Z = (zij) ∈ Rm×m+ .
This matrix represents the inter-document similarity be-
tween pairs of elements from the extended pseudo-relevant
set F ′ (i.e., the query and the pseudo-relevant documents).
The matrix formulation of DLiMe is analogous to TLiMe:

X ≈ Z X
s.t.diag(Z) = 0, Z ≥ 0

(16)

We also constrain Z to be non-negative to foster interpretabil-
ity and enforce the diagonal to be zero to avoid the trivial
solution. Since we are only interested in reconstructing the
first row of X, we only need to compute the first row of
Z. Therefore, DLiMe factorization can be reduced to a sin-
gle constrained linear least squares optimization problem as
follows:

~z∗1· = arg min
~z1·

1

2
‖~z1· − ~z1·X‖22 + β1 ‖~z1·‖1 +

β2
2
‖~z1·‖22

s.t. z11 = 0, ~z1i ≥ 0

(17)

Note that compared to TLiMe, where n least squares prob-
lem have to be solved, DLiMe is much more efficient because
it only involves solving one least squares problem. To re-
construct the first row of X we simply need to perform the
following vector-matrix multiplication:

x̂1· = ~z∗1·X (18)

3.2 LiMe Feedback Model
LiMe feedback model is created from x̂1·, which can be re-
constructed using either DLiMe or TLiMe. We can normal-
ize this vector to obtain a probability estimate. In this way,
the probability of the j-th term given the feedback model is
given by:

p(tj |θF ) =


x̂1j∑

tv∈VF ′
x̂1v

if tj ∈ VF ′ ,

0 otherwise
(19)

We only rank those terms that appear in the pseudo-relevant
set or the query. Although some PRF techniques can rank
all the terms in the collection, in practice, it is common to
only rank those appearing in the pseudo-relevant set or the
query [13, 41]. In fact, scoring terms that do not appear
in F ′ would contradict the foundations of PRF since this
approach is based on local information (i.e., the pseudo-
relevant set and the query).

Although both LiMe and RFMF decomposes a similar ma-
trix, they use different objective functions and optimization
algorithms. Additionally, LiMe employs elastic net regular-
ization. In contrast, RFMF is based on non-negative factor-
ization which can deal with non-negative and sparse data
while LiMe deals with this data by enforcing non-negativity
constraints in the optimization problem. Additionally, LiMe
discovers inter-document (DLiMe) or inter-term similarities
(TLiMe) that yield within the pseudo-relevant set and the
query while RFMF learns document and term latent factor
representations.

Next, we discuss how we fill matrix X = (xij) with features
relating query/documents i with terms j.

3.3 Feature Schemes
One advantage of LiMe is its flexibility: we can use any fea-
ture scheme to build matrix X. To foster sparsity in matrix
X, we decided to fill with zeros all those entries that corre-
spond to terms that do not appear in the current document.
This approach will provide a quite sparse matrix which can
be more efficiently decomposed than a dense one.

Let s(w,D) be the function that assigns a score to the term
w given the document D and let f(w,D) be the frequency
of occurrence of term w in document D, the matrix X is
filled in the following manner:

xij =


s(wj , Q) if i = 1 and f(wj , Q) > 0,

s(wj , Di−1) if i > 1 and f(wj , Di−1) > 0,

0 otherwise

(20)

We explored several strategies based on well-known weight-
ing functions used in Information Retrieval. We studied sev-
eral term frequency measures: raw frequency counts, bina-
rized counts and logarithmic versions. Additionally, we tried
different TF-IDF formulations. We achieved the best results
using the following TF-IDF weighting function proposed by
Salton [31]:

stf-idf (w,D) = (1 + log2 f(w,D))× log2

|C|
df (w)

(21)

where |C| is the number of documents in the collection and
df (w) represents the document frequency of term w (i.e.,
the number of documents in the collection where the term
w occurs).

In any case, other alternatives may be possible. In fact, in
previous work, we also reported the performance for the log-
arithmic TF heuristic [39]. For example, it may be worth
exploring features related to the first retrieval such as the
contribution of an individual term to the document score
within a particular retrieval model; however, in that case,
LiMe would not be independent of the retrieval technique.
Also, we could derive probabilistic weighting functions (as
RFMF does) at the expense of introducing a few new pa-
rameters to tune into the model. We leave for future work
the investigation of additional features schemes. Neverthe-
less, the ability of LiMe for performing well with simple and
well-known features such as TF-IDF is remarkable. Also,
this weighting function is supported by decades of research
in Information Retrieval.

3.4 Implementation Details
Equation 14 shows that the computation of matrix W ∗ can
be divided in multiple linear regression problems, one for
each vector ~w∗·j which represents a term in VF ′ . Thus, each
column of matrix W ∗ can be computed separately and, if
needed, in parallel without any dependencies among them.
In contrast, DLiMe only requires to solve one least squares
problem (Eq. 17). To solve these regression problems, we
used the highly efficient BCLS1 (Bound-Constrained Least

1See http://www.cs.ubc.ca/~mpf/bcls
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Squares) library, which implements a two-metric projected-
descent method for solving bound-constrained least squares
problems.

An additional optimization for TLiMe is to drop part of the
matrix W ∗. This matrix is used for computing expansion
terms when multiplied by vector ~x1· (see Eq. 15). Therefore,
we only need those rows that correspond to a term in the
original query. If we only store those similarities, we save
much space since the number of terms in a query prompted
by a user is tiny compared to the number of rows.

4. EXPERIMENTS
In this section, we assess the performance of LiMe against
state-of-the-art techniques. The experiments were performed
using Terrier [17] on five TREC collections. We describe the
evaluation methodology and explain the choice of baselines
and the parameter setting. Finally, we present and analyze
the results comparing the behavior of LiMe concerning the
baselines.

4.1 Evaluation Methodology
We conducted the experiments on diverse TREC collections
commonly used in PRF literature [15, 16, 41]: AP88-89,
TREC-678, Robust04, WT10G and GOV2. The first one is
a subset of the Associated Press collection from years 1988
and 1989. The second collection is based on TREC disks
4 and 5. The third dataset was used in the TREC Robust
Track 2004 and consists of poorly performing topics. The
fourth one, the WT10G collection, is a general web crawl
used in the TREC Web track 2000-2001. Finally, we also ran
our experiments on a large dataset, the GOV2 collection,
which is a web crawl of .gov websites from 2004 (used in
the TREC Terabyte track 2004-2006 and the Million query
track 2007-2008). We applied training and test evaluation
on all collections. We found the model hyperparameters that
maximize MAP (mean average precision) using the training
topics, and we used the test topics to evaluate the perfor-
mance of the methods. Table 1 describes each collection and
the training and test splits.

We produced a rank of 1000 documents per query. We eval-
uated MAP and nDCG (normalized discounted cumulative
gain) using trec_eval2 at a cut-off of 1000. Additionally,
we measured the RI (robustness index or reliability of im-
provement [30]) against the non-expanded query. This met-
ric, which ranges in the interval [−1, 1], is computed as the
number of topics improved by using PRF minus the num-
ber of topics hurt by the PRF technique divided by the
number of topics. We employed one-tail permutation test
with 10,000 randomizations and p < 0.05 to measure if the
improvements regarding MAP and nDCG were statistically
significant [33]. We cannot apply a paired statistic to RI
because it is a global metric.

We used title queries from TREC topics. We preprocessed
the collections with the standard Terrier stopwords removal
and Porter stemmer since previous work recommended the
use of stemming and stopwords removal [15].

2See http://trec.nist.gov/trec_eval

Table 1: Collections statistics.

Collection #docs
Avg doc Topics

length Training Test

AP88-89 165k 284.7 51-100 101-150
TREC-678 528k 297.1 301-350 351-400
Robust04 528k 28.3 301-450 601-700
WT10G 1,692k 399.3 451-500 501-550
GOV2 25,205k 647.9 701-750 751-800

4.2 Baselines and Parameter Setting
We employed the state-of-the-art language modeling frame-
work for performing the first and second stage retrievals [24].
In particular, we used the KL divergence model (see Eq. 1)
which allow us to introduce a feedback model easily [12]. For
smoothing the document language models, we used Dirichlet
priors smoothing [43] with parameter µ = 1000. To compare
the effectiveness of our proposals, we employed the following
state-of-the-art baselines:

LM First, we should always compare a PRF technique against
the performance of a retrieval model without feedback infor-
mation. We used language modeling retrieval with Dirichlet
priors (µ = 1000).

RFMF We included this PRF technique because it is based
on the non-negative factorization of a document-term ma-
trix obtained from the query and the pseudo-relevant set
[41]. We set the number of dimensions of the factorization,
d, to the size of the relevant set plus one as the authors rec-
ommended [41]. We used the TF-IDF weighting function.

MEDMM We also employed the maximum-entropy diver-
gence minimization model which is recognized as one of the
most competitive PRF techniques [16]. We followed the rec-
ommendations of the authors, and we set the IDF parameter
λ to 0.1, the entropy parameter β to 1.2 and the additive
smoothing parameter γ to 0.1 [16].

RM3 Relevance-based language models are an effective PRF
technique based on the language modeling framework. We
use Dirichlet priors for smoothing the maximum likelihood
estimate of the relevance models. We used RM3, the most
effective estimate, which uses i.i.d. sampling method and
interpolates the original query with the feedback model [13,
1]. We set the Dirichlet priors smoothing parameter µ′ to
1000 as it is typically done [15, 16, 41].

For all the PRF models, we swept the number of top k doc-
uments retrieved in the first stage among {5, 10, 25, 50, 75,
100} and the number of expansion terms e among {5, 10, 25,
50, 75, 100}. We swept the interpolation parameter α from
0 to 1 in steps of 0.1. Regarding LiMe, we trained the β1
and β2 parameters. We tuned the values of β1 among {0.01,
0.1, 1.0} and parameter β2 among {10, 25, 50, 100, 150, 200,
250, 300, 350, 400, 450}. We selected those parameters that
maximize the values of MAP in the training set.

4.3 Results and Discussion
The results of the experiments regarding MAP, nDCG, and
RI are summarized in Table 2. Overall, all the PRF tech-
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niques outperform the language modeling baseline without
query expansion. However, TLiMe is the only method that
offered significant improvements over LM in MAP and nDCG
on all collections. DLiMe showed competitive effectiveness
concerning MEDMM and RM3.

To further analyze if PRF techniques are beneficial, we mea-
sured the robustness index. This value is positive for all
the methods on every collection. This value means that,
on average, more queries were improved rather than wors-
ened due to the PRF techniques. Either DLiMe or TLiMe
achieved the highest figures in RI on every dataset except
for MEDMM on the WT10G collection. Additionally, RM3
achieve the same robustness index as TLiMe does on the
Robust04 collection.

On all datasets, TLiMe achieved the highest results regard-
ing MAP and nDCG. No baseline outperformed TLiMe on
any dataset. TLiMe significantly surpassed RFMF on four
out of five datasets regarding MAP and nDCG. Regarding
RM3, TLiMe significantly outperformed RM3 on three col-
lections (concerning MAP or nDCG). The strongest base-
line, MEDMM, was only significantly surpassed by TLiMe
on the AP88-89 collection. However, on all datasets, TLiMe
showed higher values in nDCG and MAP than MEDMM. Al-
though no baseline significantly improved TLiMe, MEDMM
significantly surpassed RM3 and DLiMe regarding nDCG
and MAP on the TREC-678 collection. Also, DLiMe, RM3,
and MEDMM significantly improved RFMF in terms of MAP
and nDCG on several datasets.

It is interesting to remark that the PRF techniques achieved
the smallest improvements in the WT10G collection. This
small improvement is probably due to the nature of the web
which is a noisy media. Also, the values of RI on this dataset
are the lowest.

Regarding the differences between DLiMe and TLiMe, the
latter approach showed better figures of MAP and nDCG on
all datasets. Nevertheless, the differences are significant only
on the TREC-678 collections. In contrast, DLiMe provided
higher RI than TLiMe on GOV2 and the same figure on
AP88-89 collections

4.3.1 Query Analysis
To provide insights into the good results achieved by DLiMe
and TLiMe, we manually studied the expanded queries pro-
duced by the tested PRF methods. Table 3 shows the top 10
expansion terms for the TREC topic 664 (“American Indian
Museum”) on the Robust04 collection.

RM3 provided bad expansion terms by adding very com-
mon uninformative terms such as “will”, “1” or “new”. Those
terms seem to be a problem of low IDF effect. In contrast,
MEDMM yielded much better expansion terms. However,
some of them are of dubious utility such as “live” or “part”.
RFMF provided specific terms, but some of them are com-
pletely unrelated to the topic (e.g., “dolphin” or “rafaela”).
Hence, the inferior performance of RFMF is likely to be due
to the introduction of noisy terms. Regarding our meth-
ods, we can see than DLiMe provided good expansion terms.
Still, this approach included the term “hey” which we think
is uninformative. In this case, TLiMe yielded the best ex-
pansion terms. All of them are specific and related to the
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Figure 1: Sensitivity of DLiMe and TLiMe
techniques to β2 on each collection. The rest of the

parameters were fixed to their optimal values.

topic.

In the light of the results, we can claim that RM3 and
MEDMM tend to foster those terms that appear in the ma-
jority of the pseudo-relevant set in contrast to matrix fac-
torization approaches. LiMe was capable of selecting very
specific and relevant terms such as “smithsonian” or “chu-
mash”. RFMF was also able to include relevant terms such
as “professor” but it also added non-related terms. There-
fore, the main advantage of the matrix formulation is its
ability to select discriminative words without being biased
to popular and non-informative terms in the pseudo-relevant
set. However, our approach based on inter-term or inter-doc
similarities can select relevant terms while RFMF factoriza-
tion approach based on document and term latent factors is
incapable of filtering non-related terms.

4.3.2 Sensitivity Analysis of Parameters
Regarding the parameters of LiMe, we observed that the dif-
ferences in effectiveness between DLiMe and TLiMe when we
changed the value of β1 were minor. We can set β1 to 0.01
reducing the number of parameters to tune and obtaining
good results. Nevertheless, the inclusion of `1 regularization
into LiMe models is still beneficial since it provides sparsity
to the learned matrix W with the corresponding space sav-
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c) RFMF varying query interpolation.
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d) MEDMM varying docs.
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e) MEDMM varying terms.
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f) MEDMM varying query
interpolation.
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g) RM3 varying docs.
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h) RM3 varying terms.
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i) RM3 varying query interpolation.
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j) DLiMe varying docs.
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Figure 2: Sensitivity of RFMF, MEDMM, RM3, DLiMe and TLiMe to k (the number of feedback
documents), e (the number of expansion terms) and α (the interpolation parameter of the original query

with the expansion terms) on each collection. The rest of the parameters were fixed to their optimal values.
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Table 2: Values of MAP, P@5, nDCG and RI for LM, RFMF, MEDMM, RM3, DLiMe and TLiMe
techniques on each collection. Statistically significant improvements according to permutation test (p<0.05)

w.r.t. to LM, RFMF, MEDMM, RM3, DLiMe and TLiMe are superscripted with a, b, c, d, e and f ,
respectively.

Collection Metric LM RFMF MEDMM RM3 DLiMe TLiMe

AP88-89

MAP 0.2349 0.2774a 0.3010ab 0.3002ab 0.3112ab 0.3149abcd

nDCG 0.5637 0.5749a 0.5955ab 0.6005ab 0.6058ab 0.6085ab

RI − 0.42 0.42 0.50 0.52 0.52

TREC-678

MAP 0.1931 0.2072 0.2327abde 0.2235ab 0.2206ab 0.2357abde

nDCG 0.4518 0.4746 0.5115abde 0.4987ab 0.4936ab 0.5198abde

RI − 0.23 0.26 0.40 0.44 0.46

Robust04

MAP 0.2914 0.3130a 0.3447ab 0.3488ab 0.3435ab 0.3517ab

nDCG 0.5830 0.5884 0.6227ab 0.6251ab 0.6247ab 0.6294ab

RI − 0.07 0.32 0.37 0.32 0.37

WT10G

MAP 0.2194 0.2389a 0.2472a 0.2470a 0.2368a 0.2476a

nDCG 0.5212 0.5262 0.5324 0.5352 0.5290 0.5398a

RI − 0.30 0.36 0.20 0.26 0.30

GOV2

MAP 0.3310 0.3580a 0.3790ab 0.3755ab 0.3731ab 0.3830ab

nDCG 0.6325 0.6453 0.6653ab 0.6618ab 0.6588ab 0.6698abd

RI − 0.42 0.66 0.60 0.72 0.62

Table 3: Top 10 expansion terms for the TREC topic 664 (“American Indian Museum”) when using the
different PRF methods on the Robust04 collection.

a) RFMF

term weight

indian 0.1725
museum 0.1685
american 0.1505
professor 0.0193
tribal 0.0160
ancient 0.0155
dolphin 0.0153
rafaela 0.0140
activist 0.0137
racist 0.0137

b) MEDMM

term weight

indian 0.1511
museum 0.0802
american 0.0780
cultur 0.0210
year 0.0177
live 0.0153
nation 0.0148
artifact 0.0146
part 0.0139
tribal 0.0127

c) RM3

term weight

indian 0.1285
american 0.0895
museum 0.0874
year 0.0219
will 0.0209
west 0.0182
1 0.0167
tribal 0.0158
time 0.0149
new 0.0147

d) DLiMe

term weight

indian 0.1392
museum 0.1365
american 0.1257
smithsonian 0.0394
artifact 0.0307
hey 0.0272
tribal 0.0271
cultur 0.0250
chumash 0.0219
tribe 0.0213

e) TLiMe

term weight

indian 0.1392
museum 0.1364
american 0.1256
tribe 0.0393
artifact 0.0306
cultur 0.0272
tribal 0.0271
nation 0.0249
chumash 0.0219
smithsonian 0.0212

ings. Regarding β2, we plotted the values of MAP achieved
by DLiMe and TLiMe with different amount of `2 regular-
ization in Fig. 1. Except for the WT10G collection, the
parameter β2 is relatively stable among the values 150 and
400 for both DLiMe and TLiMe.

We also studied how DLiMe and TLiMe behave varying the
size of the pseudo-relevant set k, the number of expansion
terms e and the interpolation parameter α against the base-
lines RFMF, MEDMM, and RM3. Figure 2 summarizes
the results of the sensitivity analysis regarding MAP. The
general trend is that a high number of pseudo-relevant doc-
uments hurts the performance of the PRF techniques. The
optimal number of feedback documents was never higher
than 25. LiMe methods and RM3 are quite stable, and
they behave optimally with 5-10 documents. In contrast,
RFMF and MEDMM may require up to 25 documents in
the pseudo-relevant set depending on the dataset.

The optimal number of expansion terms is quite variable.
MEDMM and RM3 require more expansion terms than any
other approach except on the WT10G dataset which is the
noisiest one. LiMe methods are robust to noisy collections
and work well with a high number of terms on WT10G. In
contrast, RFMF is the technique that requires the smallest
number of expansion terms in general. Finally, DLiMe and
TLiMe are situated between the two extremes.

Regarding the interpolation parameter α, except for the
GOV2 collection, we observed that the optimal values for
DLiMe and TLiMe lie within a narrower interval than the
optimal values for RFMF, MEDMM, and RM3. Neverthe-
less, we can see that α has a notable impact on any PRF
technique and we should adequately tune it. Overall, the
performance of RFMF is very unstable when we vary α (to
a lesser extent, this is also true when varying the other pa-
rameters). We also found that when we do not interpo-
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late the feedback model with the original query by setting
α = 1 (i.e., when we use the feedback model as the expanded
query), RM3 showed the lowest performance. In general, we
observed that DLiMe, TLiMe, and MEDMM generate better
feedback models to use in isolation.

5. RELATED WORK
Pseudo-relevance feedback (PRF) is a fertile area of research
in Information Retrieval [28, 27, 8, 26, 4, 13, 6, 14, 15, 32,
21, 23, 16, 41]. Among the PRF techniques, those based on
the language modeling framework have showed great effec-
tiveness [15]. Therefore, we used them as baselines and de-
scribed them in Section 2. Additionally, we included RFMF
as a baseline because it was the first work that modeled the
PRF task as a matrix factorization problem [41].

PRF methods have been adapted to collaborative filtering
recommendation with great success [22]. In particular, rele-
vance-based language models [22, 36, 37, 38] and the Rocchio
framework [35]. Conversely, RFMF is a case of a recommen-
dation technique applied to PRF [41].

Following this analogy between PRF and collaborative fil-
tering, we can find a state-of-the-art recommendation tech-
nique, SLIM [20], which is also based on linear methods.
SLIM decomposes the full user-item feedback producing an
item-item similarity matrix using `1 and `2 regularization.
With this decomposition, they reconstruct the full user-item
feedback matrix to generate recommendations. In contrast,
we only need to predict the first row of X since we only have
to expand the query. As SLIM does, LiMe fills with zeros all
the missing values of the input matrix. In the beginning, in
Recommender Systems, those unknown values were not set
to zero. Instead, the objective function was optimized only
for the known elements. However, later research found that
this procedure produces worse rankings than dealing with
the whole matrix considering all missing values as zeros [7].

Although RFMF and LiMe are PRF techniques based on
matrix factorization, they compute different decompositions.
The differences in performance are explained by the use of
different objective functions and optimization algorithms.
LiMe minimizes the elastic net loss and RFMF minimizes
the KL-divergence of the NMF decomposition. This diver-
sity in performance is also found in collaborative filtering
where approaches such as SLIM outperforms several alter-
native matrix factorization techniques [20].

Linear methods have also been used in Information Re-
trieval. For example, [19] proposed a learning to rank ap-
proach based on linear models that directly maximize MAP.
Moreover, linear methods have been applied to other tasks
such a query difficulty prediction [3]. In the context of PRF,
[25] used logistic regression (a linear classification method)
to discriminate between relevant and non-relevant terms.
However, to the best of our knowledge, multiple elastic net
models have never been applied before to the PRF task.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented LiMe, a framework where the
PRF task is modeled as a matrix decomposition problem
which involves the computation of inter-term similarities.

In previous work, we proposed TLiMe, a technique based
on inter-term similarities. In this extended version, we also
present DLiMe which is based on an inter-document matrix.
TLiMe and DLiMe factorizations are solved as linear least
squares problems with `1 and `2 regularization and non-
negativity constraints. For that purpose, we use not only the
information from the pseudo-relevant set but also the orig-
inal query before expansion. The experimental evaluation
showed that TLiMe outperforms state-of-the-art baselines
on five TREC datasets whereas DLiMe shows competitive
effectiveness with a reduced computational cost.

This work paves the way for further investigation on linear
methods for pseudo-relevance feedback. The obtained re-
sults reveal the potential of LiMe as a general PRF method
usable on top of any retrieval model. LiMe is a flexible
framework that allows the introduction of different document-
term features. The good results achieved by DLiMe and
TLiME using only TF-IDF indicate that there may be room
for improvements. Therefore, exploring alternative feature
schemes seems to be a promising research direction.

We also envision to include a richer representation of text
features into the model. For example, the use of features
extracted from Wikipedia has proved to be beneficial in the
PRF task [40]. Additionally, we plan to study how other
similarity measures may be useful for PRF. In particular, we
plan to study translation models because they usually rely
on inter-term similarities [2, 12]. Previous work on trans-
lation models learned inter-term similarities from training
data [2] or employed mutual information [10].
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ABSTRACT
The recent changes made in the Linux kernel aimed at achiev-
ing better energy efficiency through a tighter integration be-
tween the CPU scheduler and the frequency-scaling subsys-
tem. However, in the original implementation, the frequency
scaling mechanism was used only when there were no real-
time tasks in execution. This paper shows how the deadline
scheduler and the cpufreq subsystem have been extended to
relax this constraint and implement an energy-aware real-
time scheduling algorithm. In particular, we describe the
design issues encountered when implementing the GRUB-
PA algorithm on a real operating system like Linux. A set
of experimental results on a multi-core ARM platform vali-
date the effectiveness of the proposed implementation, which
has been recently merged into the official Linux kernel.

CCS Concepts
•Computer systems organization → Embedded soft-

ware; Real-time operating systems;

Keywords
DVFS, Power-Aware Scheduling, Real-Time Scheduling,
Linux

1. INTRODUCTION
During the recent years, the ICT industry has faced a grow-
ing pressure for increasing the processing capabilities of mo-
bile devices (like smartphones or IoT nodes) and, at the
same time, extending (or, at least, not reducing) their au-
tonomy. The battery technology on this kind of devices, in
fact, has evolved too slowly for being capable of satisfying
the processing needs posed by modern applications. Even
worse, on these devices there is often the additional require-
ment of avoiding the mechanical cooling systems typically
used for dissipating the heat produced by powerful process-
ing units (because they could easily break and, in any case,
would increase the overall size and energy consumption).

Moreover, some of the applications running on this new gen-
eration of embedded devices need a sufficient amount of CPU
time to provide an acceptable Quality of Service (QoS), or

Copyright is held by the authors. This work is based on an earlier work: SAC’18
Proceedings of the 2018 ACM Symposium on Applied Computing, Copyright

2018 ACM 978-1-4503-5191-1. https://doi.org/10.1145/3167132.3167198

are characterized by some temporal constraints that have
to be respected. Hence, the system has to find a trade-off
between two opposite needs: providing an acceptable QoS
(or, respecting the applications’ temporal constraints) and
reducing the energy consumption.

Such a trade-off can be achieved by using different kinds of
approaches. For example, Dynamic Voltage and Frequency
Scaling (DVFS) is a renowned technique for reducing the
power-consumption of CPUs by dynamically adjusting their
frequency and voltage. On a General-Purpose Operating
System (GPOS), the load estimation for selecting the CPU’s
Operating Performance Point (OPP) is usually based upon
some kind of moving average. The reason is that on GPOSs
there is no standard way for measuring the QoS provided by
the applications. Real-Time Operating Systems (RTOS), in-
stead, can implement algorithms that select the lowest pos-
sible OPP that does not break the specific real-time guar-
antees.

Although several DVFS algorithms for real-time systems
have been proposed in the literature (see Section 6 for more
details), none of them has convinced the Linux kernel com-
munity about its effectiveness before this work. Notice that
most of the previous work only considered single-core sys-
tems, while almost all of the recent hardware architectures
are characterized by multi-core CPUs. This paper, instead,
presents and evaluates the design and implementation of a
new DVFS algorithm (based on a multi-core extension of
GRUB-PA) that has been recently integrated into the offi-
cial Linux kernel.

2. THE PROBLEM
In this paper, we consider the issue of reducing the energy
consumption in a Linux-based OS running a mix of real-time
and non real-time tasks. The Linux kernel is widely used in
the new generation of embedded and mobile devices, and can
support both (soft or hard) real-time applications as well as
non real-time activities. The Linux approach to DVFS is
traditionally oriented to non real-time workloads, allowing
to save energy (with an amount of aggressiveness that can
be configured by the user) when no real-time tasks are active
in the system.

To better understand the problem addressed in this pa-
per, consider a Linux-based mobile device running some
non real-time workload (scheduled with the default POSIX
SCHED_OTHER policy) together with a time sensitive thread.
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Such thread needs to periodically execute (every 100ms) an
activity requiring 30ms of CPU time when the CPU runs
at the maximum frequency. This kind of activity is gener-
ally implemented as a real-time thread scheduled with fixed
priority (using the POSIX SCHED_FIFO or SCHED_RR policy)
or with EDF (using the Linux SCHED_DEADLINE policy de-
scribed in the next sections).

GPOSs like Linux typically use an estimation of the CPU
load to reduce the CPU frequency. However, this approach
risks to break the timing guarantees of the real-time activ-
ities. Using the example above, if the CPU frequency is
lowered too much, the computation time of the real-time
activity can become larger than 100ms; as a consequence,
the activity cannot be terminated before the next periodic
activation. As an alternative, it is possible to set the CPU
frequency to the maximum value, thus that the real-time ac-
tivity’s requirements are respected. However, this solution
increases the energy consumption without any good reason
(when the CPU runs at the maximum frequency, the real-
time activity only requires 30% of the CPU time). This
issue can be partly mitigated by setting the CPU frequency
to the maximum value only when the real-time thread is
active. However, there is still a non negligible amount of
wasted energy.

The solution proposed in this paper is based on a theoreti-
cally sound estimation of the real-time workload (based on
the GRUB and GRUB-PA algorithms) setting the CPU fre-
quency to lower values with respect to the maximum fre-
quency originally set by the Linux kernel; the implemented
algorithms ensure that the frequency is lowered still respect-
ing the requirements of the real-time activities running in
the system.

3. THEORETICAL BACKGROUND
In order to understand how the proposed technique works, it
is useful to introduce some basic terminology about real-time
systems, and some background about theoretical scheduling
and DVFS algorithms.

3.1 System model
A real-time task τi can be seen as a sequence of repetitive
actions, named jobs. Each job Ji,j (the jth instance of task
τi) becomes ready for execution (“arrives”, causing a wake-
up of the task) at time ri,j and needs an amount of CPU
time ci,j for completing. After executing for the amount of
time ci,j , the job finishes at time fi,j (and the related task
blocks, unless some other job has arrived in the meanwhile);
notice that by definition fi,j ≥ ri,j + ci,j .

The temporal constraints associated with the real-time task
can be modelled as absolute deadlines di,j , where a single
deadline is respected if fi,j ≤ di,j .

Task τi can be periodic if ∀j, ri,j+1 = ri,j + Ti (where Ti is
the task’s period) or sporadic if ∀j, ri,j+1 ≥ ri,j + Ti (in
this case, Ti is called minimum inter-arrival time). The
Worst-Case Execution Time (WCET) of the task is defined
as Ci = maxj{ci,j}, while absolute deadlines are generally
set as di,j = ri,j + Di, where Di is the relative deadline of
the task. If Di = Ti, we talk about implicit deadlines.

3.2 The Constant Bandwidth Server
While the real-time theory (starting from [15]) has provided
a huge amount of different algorithms for scheduling real-
time tasks, in this paper we focus on the class of reservation-
based algorithms [21], based on the idea of assigning the re-
source to task τi for an amount of time Qi every period
Pi. The specific algorithm considered in this paper is the
Constant Bandwidth Server (CBS) [1], because it is the al-
gorithm originally implemented in the Linux kernel (as de-
scribed in the next section). The CBS, in turn, is based on
the Earliest Deadline First (EDF) [15] algorithm: in partic-
ular, CBS allows to assign deadlines to tasks that are then
used by EDF for CPU scheduling.

If we consider the CPU speed as invariant (i.e. all the CPUs
/ CPU cores in the system have the same constant speed),
the behaviour of the algorithm is very simple: each real-time
task is assigned a CPU reservation (Qi, Pi), meaning that
the task needs to execute at least for the“runtime”Qi

1 every
period of time Pi. The ratio Qi/Pi denotes the fraction of
CPU time reserved for the task.

If a task tries to execute for more than Qi in a period Pi,
then it gets throttled (i.e., not selected for execution) until
the end of the current reservation period Pi. This effect is
achieved by implementing three mechanisms:

• accounting: each task is assigned a current runtime,
that is decreased when the task executes. In particular,
if the task executes for a time δ, its current runtime is
decreased by δ.

• enforcement: when the current runtime of a task ar-
rives at 0, the task is throttled and cannot be scheduled
until the current runtime is replenished.

• replenishment: at the end of a reservation period (when
the time becomes equal to the scheduling deadline of
the task), the current runtime of the task is replen-
ished to the maximum value Qi (and the scheduling
deadline is postponed by Pi).

In this way, each task is constrained to not use more than its
reserved CPU share — i.e., a maximum of Qi every Pi units
of time. This behavior (known as“hard reservation”[21]) has
been designed to avoid the “deadline aging” phenomenon [4,
23], where a task consumes its future reservation due to
other real-time tasks not ready to run. Moreover, the hard
reservation behaviour avoids the starvation of lower prior-
ity tasks due to misbehaving real-time tasks (i.e., isolation
property). On the other hand, however, it makes the sched-
uler not work conserving, since a real-time task might be
throttled even when the rest of the system is idle.

3.3 DVFS
When adding DVFS, resource-reservation algorithms become
more complex. For example, it has to be decided if the algo-
rithm reserves a fixed amount of CPU time to the task (in-
dependently from the CPU speed), or if it allows the task to
execute some kind of “fixed amount of work” in every period

1Notice that the Linux “runtime” is often called “budget” in
the real-time literature.
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Pi (in this case, the reserved amount of time Qi has to be
rescaled according to the current CPU speed / frequency).

The solution adopted in the Linux kernel is to let the run-
time Qi specify the amount of time reserved to the task when
the CPU runs at its maximum speed, and to allow tasks to
execute the same amount of work in a period Pi indepen-
dently from the actual CPU speed. This means that the
CPU scheduler has two different possibilities:

1. Always execute real-time tasks at the maximum CPU
frequency. This was the approach originally taken by
the Linux kernel 2.

2. Dynamically rescale the runtime Qi according to the
actual CPU speed, as the execution time increases
when reducing the CPU frequency.

To avoid complex hardware-specific models, the execution
time is generally assumed to scale linearly with the fre-
quency: if Ci is the WCET of τi at the maximum fre-
quency fmax, then the WCET at frequency f ′ < fmax will
be C′

i = Ci
fmax

f ′
.

In case of EDF, the utilization U =
∑

i

Ci

Ti
of a real-time

taskset Γ = {τi} at frequency f ′ will be U ′ =
∑

i

Ci

Ti

fmax

f ′
=

U fmax

f ′ . If the system has only one CPU, the tasks are guar-

anteed to respect all of their deadlines if U ′ ≤ 1, and this
leads to

U ′ ≤ 1 ⇒ U
fmax

f ′
≤ 1 ⇒ f ′ ≥ Ufmax

In case of other scheduling algorithms and/or multi-core sys-
tems, the analysis is more complex but can still be per-
formed.

3.4 GRUB-PA
The previous approach is quite conservative, because it as-
sumes that all the jobs execute for the maximum possible
amount of time. The real-time literature has therefore pro-
posed various algorithms to further reduce the CPU fre-
quency, exploiting the fact that the actual execution times
could be smaller than the WCETs. In the case of CBS, in
particular, this approach can be optimized by introducing
an estimation of the actual utilization. The active utiliza-
tion Uact denotes the fraction of CPU time actually used by
the tasks that are active on a CPU. This metrics has been
originally used by the GRUB algorithm [10] to modify the
accounting mechanism.

Considering the task τi served by a reservation (Qi, Pi),
the Uact is immediately increased by Ui = Qi/Pi when τi
wakes up (i.e., it is added to the runqueue of the scheduler).
When τi blocks, however, the active utilization cannot be
immediately decreased, otherwise this could break the real-
time guarantees (e.g., if τi unblocks immediately later and
the bandwidth has been already assigned to another task).
Therefore, when τi blocks, its utilization Qi/Pi is removed
from Uact only at the so-called “0-lag time”. If τi wakes up

2However, this approach caused some issues on heteroge-
neous multicore architectures, such as ARM big.LITTLE.

Inactive wake upblock

ActiveContending

ActiveNonContending

0−lag time

wake up

active utilization

Increase

Decrease

active utilization

Figure 1: Diagram of the task states in the GRUB

algorithm.

again before the 0-lag time, then nothing is done. Figure 1
shows the state transitions for a GRUB task.

The GRUB algorithm can be divided into two different parts:
a set of rules for identifying the reclaimable bandwidth, and
a set of rules for exploiting such bandwidth. The original
GRUB algorithm reassigns the reclaimed bandwidth to let
the active real-time tasks execute for a longer time. In the
GRUB-PA algorithm [25], instead, the reclaimed CPU time
is used to slow down the processor (i.e., to lower the CPU
frequency). The real-time tasks execute for a longer time,
but at a slower speed. The net effect is a reduction of the
CPU energy consumption still respecting the real-time guar-
antees.

The specification of the two algorithms is very similar, as
GRUB-PA only adds a couple of extensions:

• it considers the processor speed when performing the
runtime accounting;

• it sets the processor speed equal to Uact.

The original paper [25] also devised a mechanism for tak-
ing into account the bandwidth reduction due to the time
needed for switching frequency. Even if not stated, however,
the proposed formula is valid only for systems with two CPU
frequencies, since it does not take into account “ramp up”
scenarios in which the frequency is increased multiple times.
The proposed formula can be easily extended to multiple
frequencies by following the original approach. The inter-
ested readers can refer to the original papers for an in-depth
description of the algorithms.

4. IMPLEMENTATION IN LINUX
Some of the algorithms illustrated in the previous section
were been implemented in the Linux kernel, and have been
used as a base for the new DVFS mechanism.

4.1 Deadline Scheduling
Since release 2.6.23, Linux has a modular scheduling frame-
work consisting of a main core and a set of scheduling classes,
each encapsulating a specific scheduling policy. The bind-
ing between each policy and the related scheduler is done
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through a set of hooks (i.e., function pointers) provided by
each scheduling class and called by the core scheduler.

The SCHED_DEADLINE [14] scheduling policy, available by de-
fault since version 3.14 of the Linux kernel, uses the CBS
algorithm to assign deadlines to tasks, and then EDF to
schedule the tasks based on such deadlines. The default al-
gorithm implemented by SCHED_DEADLINE is based on global
EDF, but tasks are inserted on per-CPU (or per-CPU core)
ready queues, named runqueues.

Since version 4.13 of the kernel, the SCHED_DEADLINE schedul-
ing class has been improved to optionally support CPU re-
claiming. Obviously, the original GRUB algorithm could
not be directly implemented in the Linux kernel, mainly be-
cause by reclaiming 100% of the CPU time it could cause
a starvation of non SCHED_DEADLINE tasks and also because
the algorithm did not support multiple CPUs / CPU cores.
Hence, a slightly different algorithm called M-GRUB [2, 3]
has been implemented by modifying the mechanism for ac-
counting the execution time. M-GRUB improves the algo-
rithm by adding support for multiple cores and by allowing
to reclaim only a pre-defined (and user-configurable) frac-
tion of the total CPU time (so that starvation of other tasks
can be avoided). In order not to break real-time guarantees
on multi-core systems, M-GRUB performs reclaiming based
on the inactive utilization, tracked per core / runqueue. The
inactive utilization of a runqueue can be computed as the dif-
ference between the total utilization of the SCHED_DEADLINE
tasks associated to the runqueue (even if they are blocked)
and the runqueue’s active utilization Uact. Hence, to imple-
ment CPU reclaiming, the kernel tracks the active utilization
Uact of each runqueue (which is stored in a per-runqueue
variable named running_bw), and this value can be used to
drive the DVFS mechanism, similarly to what GRUB-PA
does.

The modified accounting rule can be selected per-task, by
using the new SCHED_FLAG_RECLAIM flag introduced in the
user-space API. If set, this flag allows a task to explicitly
reclaim some further CPU time (if any) unused by other
SCHED_DEADLINE tasks.

4.2 Frequency Scaling
The Linux kernel contains a subsystem, named “cpufreq”,
that scales the CPU frequency (and voltage) according to
different user-selectable policies. It contains a set of “gover-
nors”, each adopting a different power management strategy,
and a set of “drivers”, implementing the actuators for the fre-
quency scaling decisions made by the selected governor. In
other words, the cpufreq drivers implement the frequency
scaling mechanisms (for different kinds of CPUs), while the
various governors implement the different policies.

The ondemand and conservative governors aim at dynami-
cally adjusting the CPU frequency based on some kind of
estimation of the system load, but have been designed con-
sidering non real-time workloads. As a consequence, when
used in real-time systems, they present two issues: their
goal is not formally specified (to correctly schedule real-time
tasks, instead, it is important to formalize the invariants
that the DVFS mechanism has to respect) and they have
poor performance due to a coarse integration with the CPU

scheduler.

To be more effective, a DVFS algorithm needs to be more
tightly integrated with the CPU scheduler, so that the ap-
plications’ requirements can be tracked more easily. For
example, all the DVFS algorithms for real-time tasks re-
quire some kind of interaction between the CPU scheduler
and the frequency scaling mechanism, so that the CPU fre-
quency can be set to the appropriate value at the right time
and the temporal requirements are respected.

To address this issue, the new schedutil governor has been in-
troduced (since version 4.7 of the kernel), implementing the
interactions between the cpufreq subsystem and the CPU
scheduler. Load estimation for non real-time tasks is achieved
through the scheduler’s Per-Entity Load Tracking (PELT)
mechanism, which gives more importance to recent load
contributions by using a geometric series. Unfortunately,
the original schedutil governor preserved the real-time and
SCHED_DEADLINE guarantees by running fixed priority and
deadline tasks at the highest CPU frequency (while DVFS
was performed only for SCHED_OTHER tasks based on the
PELT estimation).

While setting the CPU at the maximum frequency is rea-
sonable for fixed priority (i.e. SCHED_FIFO and SCHED_RR)
tasks, because their CPU requirements are not known in
advance, a smarter approach can be taken when scheduling
SCHED_DEADLINE tasks, whose CPU demand is specified ex-
plicitly in terms of runtime and period. In particular, the
utilization already tracked by the CPU reclaiming mecha-
nism provides an estimation of the fraction of CPU time
used by the SCHED_DEADLINE tasks currently running on a
CPU core. In the same way as the GRUB algorithm has
been modified to be usable in practice in the Linux kernel [2,
3], this paper shows how to implement a DVFS mechanism
inspired by GRUB-PA.

4.3 Implementing GRUB-PA
Remember that if a task τi is scheduled by SCHED_DEADLINE

with Qi ≥ maxj{ci,j}, Pi ≤ minj{ri,j+1 − ri,j} and some
admission test is respected3, then the task is guaranteed to
respect all its deadlines. Hence, the new DVFS mechanism
must be defined not to break this guarantee.

Considering a single CPU core, if its frequency is set to
the maximum value fmax, then the core will not execute
SCHED_DEADLINE tasks for a fraction (1− Uact) of the time.
Slowing down the CPU frequency, the jobs’ execution times
ci,j will increase proportionally; hence all the runtimes Qi

have to be increased proportionally in order not to miss any
deadline. As a consequence, the amount of time not used
by SCHED_DEADLINE tasks (which can be seen as an “idle
time”4) will decrease. If the CPU frequency f is higher than
fmax · Uact, then it is possible to guarantee that each job
of each SCHED_DEADLINE task will be able to finish before its
deadline (that is, it will be able of receiving an amount of

3The admission test for single-processor systems is
∑

i

Qi

Ti
≤

1. For multi-processor systems it is more complex — for
example see Section 4.2 of [3].
4Notice that the term “idle” could be misleading here,
as the CPU is not idle but it is simply not executing
SCHED_DEADLINE tasks.
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CPU time equal to
ci,j ·f

max

f
before the end of the reservation

period). Hence, it is possible to save some energy by setting
the CPU frequency to f ≥ fmax · Uact, as requested by
GRUB-PA.

Again, remember that since lowering the CPU frequency
slows down the performance, the tasks will need more time
to do their work (in other words, job Ji,j will execute for

an amount of time
ci,j ·f

max

f
instead of ci,j). Hence, the

scheduler rescales the tasks’ runtimes accordingly, by mod-
ifying the accounting rule. In particular, when a task exe-
cutes for a time δ, its current runtime is not decreased by
δ, but by δ · fmax/f (where f is the current frequency).
If f = fmax · Uact, then the current runtime is decreased
by δ · Uact, as done by GRUB (and by the new reclaiming
mechanism set by SCHED_FLAG_RECLAIM).

When considering multiple CPUs / CPU cores, the DVFS
mechanism can be based on the M-GRUB algorithm. As al-
ready mentioned, the kernel tracks two different per-runqueue
utilizations: the active utilization Uact (as done by the orig-
inal GRUB algorithm) and the total runqueue utilization
(also taking into account non-active tasks). Both these uti-
lizations can be used for frequency scaling, resulting in dif-
ferent DVFS behaviors: using the active utilization results
in a more aggressive frequency scaling, potentially achiev-
ing more energy saving but resulting in many frequency
switches; using the total runqueue utilization, instead, re-
sults in a more conservative approach, saving less energy but
reducing the number of frequency switches. One of the first
design choices when implementing the new DVFS mecha-
nism has therefore concerned which of these two utilizations
to use.

To better understand the implications of using the active
utilization or the total runqueue utilization, consider a real-
time task τi scheduled with a runtime Qi and a period Pi

resulting in an utilization Ui = Qi/Pi = 70%. If the jobs of
this task finish after executing for less than the reserved run-
time Qi, setting the CPU frequency based on the total run-
queue utilization (i.e., 70% of the maximum frequency) is a
more conservative approach, that has the drawback of a poor
energy efficiency. With such an approach, in fact, a real-time
task contributes to the CPU frequency even when blocked.
On the other hand, it has the benefit of a lower number of
frequency switches (because the frequency is changed only at
task creation and destruction). Considering that the WCET
is often much higher than the average execution time, and
aiming at reaching a better energy performance, we have
rather preferred a more aggressive approach. We have fol-
lowed the GRUB-PA algorithm more strictly by relying on
the active utilization. This approach has the advantage of
further reducing the CPU frequency whenever a blocked task
enters the inactive state.

Note that, in line with the other DVFS mechanisms avail-
able in Linux, we have assumed the speed of the executed
task to be proportional to the CPU frequency5. Moreover,
it is important to point out that changing the frequency

5This assumption can be easily removed by integrating the
scheduler and the schedutil governor with the Energy Aware
Scheduling (EAS) subsystem that is currently being devel-
oped by the Linux community.

of the cores affects their processing speed, but not the la-
tency of the memory accesses. More complex models can be
elaborated to take into account both the processing and the
memory access speeds.

Summing up, the DVFS mechanism proposed in this paper,
inspired by GRUB-PA, scales the CPU frequency based on
the active utilization Uact. This result has been obtained by
modifying the schedutil governor to use Uact as an estima-
tion of the CPU load: when considering only SCHED_DEADLINE
tasks, the resulting frequency scaling is identical to the one
obtained by using GRUB-PA.

Since real CPUs do not allow to set their operating frequen-
cies to arbitrary values (but permit to select only a limited
number of discrete values), the cpufreq subsystem selects the
minimum possible frequency that is higher than fmax ·Uact.
Additionally, it automatically discards requests of setting a
CPU frequency equal to the one already in use. The cpufreq
subsystem also implements a timing mechanism for blocking
all frequency switch requests until a certain amount of time
has elapsed since the last switch. Without this mechanism,
too many requests could keep the CPU busy, resulting in
low performance and additional energy consumption. When
dealing with real-time tasks, however, it is important to in-
crease the CPU frequency immediately, otherwise some real-
time task may miss its deadline. We have therefore modified
cpufreq to increase the CPU frequency immediately, crossing
such mechanism.

The frequency set by the schedutil governor has of course
to take into account also the processing needs of the other
scheduling classes. This has been easily achieved by extend-
ing the existing data structures to keep track of the load
contributions of the various scheduling classes.

Another important difference with the original GRUB-PA
algorithm is that it performed the accounting operations (i.e.
decreasing the remaining runtime of the executing task) as-
suming that the CPU frequency had been set only based on
the active utilization Uact. Since the CPU frequency can be
different from fmax · Uact (due to the load contributions of
the other scheduling classes), the accounting must be per-
formed considering the actual frequency, and not the value
of Uact (as originally done by GRUB and GRUB-PA). In
this way, the current runtime of the task is decreased based
on how much processing power (i.e., CPU frequency) it ac-
tually obtained.

Notice that, as mentioned, other scheduling classes are free
to update their own load contributions (thus affecting the
CPU frequency) without informing the deadline scheduler of
such changes. This means that, when performing the run-
time accounting, the real-time task could have been executed
at a frequency different than the one currently used. We had
three possible options to deal with these asynchronous fre-
quency changes:

1. Add a notification mechanism to inform the deadline
scheduler about every change of the CPU frequency
made by the other scheduling classes. Despite the pre-
cise accounting, however, this approach would have
introduced a large amount of unwanted overhead.

2. Prevent the other scheduling classes from changing
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the CPU frequency when there is some real-time load.
Even if viable, this approach would be seldom accepted
by the kernel community (who traditionally is more
concerned with energy efficiency rather than precise
real-time execution).

3. Use the current value of the CPU frequency at the
moment of the accounting, regardless of any frequency
change that may have occurred since the last account-
ing operation. This — of course, slightly inaccurate
— approach is the one that has been suggested by the
kernel community.

Currently, a reliable information about the actual CPU fre-
quency is available to the schedutil governor only on ARM
platforms (through a patch recently merged into the main-
line kernel). Therefore, to take advantage of the proposed
DVFS mechanism on non-ARM platforms 6 without break-
ing the real-time guarantees, the user has to explicitly re-
quest CPU reclaiming by setting the SCHED_FLAG_RECLAIM

flag for important deadline tasks.

Finally, we faced a few technical difficulties due to some de-
tails of the cpufreq subsystem. The schedutil governor relies
on a worker kernel thread for driving frequency changes on
platforms that do not have fast switching capabilities. This
thread was originally scheduled with the SCHED_FIFO policy
and a priority equal to (MAX_USER_RT_ PRIO / 2). However,
it must have higher priority than all the SCHED_DEADLINE

tasks, otherwise a CPU-hungry task would be able of delay-
ing the frequency switches. As a temporary workaround, the
priority of this task has been raised to the maximum pos-
sible value7. The kernel community expressed a bit of con-
cern due to unwanted scheduling behaviors that may happen
when mixing such a high priority kernel thread with priority
inheritance or similar resource sharing protocols. However,
these are considered corner cases, and this temporary solu-
tion has been accepted waiting for a more general approach.

As a final remark, it is important to observe how the mod-
ular cpufreq structure allowed us to implement our new
DVFS policy (based on GRUB-PA) by simply modifying the
schedutil governor, without having to cope with the hard-
ware details, with the CPU interface, or with the implemen-
tation of the drivers. These modifications of the schedutil
governor have been merged in the official Linux kernel since
version 4.16.

5. EXPERIMENTAL EVALUATION
To validate the proposed scheduler we have performed a
set of extensive tests using different ARM-based embedded
boards. The presented results extend the preliminary evalu-
ation introduced in [24]. Where not explicitly specified, the
results have been measured using a “CubieTech cubietruck”
board based on a dual-core Allwinner A20 ARM Cortex-A7
SoC. The CPU cores can run at seven different frequencies:

6Note, however, that nowadays ARM-based platforms rep-
resent the vast majority of modern mobile devices.
7Technically, it has been transformed into a special
SCHED_DEADLINE task without the traditional reservation
values (i.e., runtime and period) and executed for all the
needed time.

144 MHz, 312 MHz, 528 MHz, 720 MHz, 864 MHz, 912 MHz,
and 960 MHz.

The real-time load has been generated through the rt-app
framework8, implementing one or more real-time tasks com-
posed by periodic jobs with a fixed execution time, run
through the ARM’s LISA toolkit9. To achieve consistent
results, all the provided values were averaged over 10 con-
secutive runs.

The energy consumption has been measured through the
Baylibre’s ACME Cape board10 integrated with LISA. We
highlight the fact that the measured values are related to
the energy consumed by the whole embedded board, not
just the SoC.

5.1 Hard real-time schedulability
In the first set of experiments, we verified that the new
DVFS mechanism does not introduce any unexpected dead-
line miss in tasksets that are not supposed to miss deadlines.
Note that, since SCHED_DEADLINE uses a global EDF algo-
rithm to schedule tasks over multiple cores, the admission
test implemented by the kernel (

∑
i
Qi/Pi ≤ x ·M , where M

is the number of CPU cores and x is a user-definable value
between 0 and 1) does not always guarantee the hard re-
spect of all deadlines, but only that the maximum tardiness
fi,j − ri,j has an upper bound. Hence, we decided to start
with the simplest possible taskset that is guaranteed not to
miss any deadline, composed by one single task.

A periodic real-time task τ = (C, T ) scheduled with a reser-
vation (Q,P ) is guaranteed not to miss any deadline if C ≤
Q; since the Linux kernel performs the CPU time account-
ing at every system tick, this condition must be changed
in C ≤ Q − T tick, where T tick is the length of a system
tick. Hence, in these first experiments, we used a periodic
task with period 100ms and execution time C, scheduled
by SCHED_DEADLINE with a runtime Q such that C = 0.9Q.
Multiple experiments have been performed, with the run-
time Q ranging from 10ms to 100ms (hence, C ranging from
9ms to 90ms). The experiments with the new DVFS mech-
anism have been performed using a 4.17.10 kernel (which
includes the new frequency scaling policy described in this
paper), while the experiments with the “old schedutil” have
been performed using a 4.15.18 kernel (which did not include
the new policy yet).

The results in terms of both energy consumption and dead-
line misses have been measured for the previous schedutil
governor, for the performance governor (which keeps the
CPU always at the maximum frequency) and for the new
DVFS algorithm. Since the previous schedutil governor al-
ways missed all the deadlines when the runtime was set equal
to the reservation period, such a configuration has been re-
moved from the results presented in this section, and re-
placed with the N.A. (“Not Applicable”) acronym.

Figure 2 shows the average energy consumption measured
by the energy meter for different values of the reservation.
The registered percentage of deadline misses is summarized

8https://github.com/scheduler-tools/rt-app
9https://github.com/ARM-software/lisa

10http://baylibre.com/acme/
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Figure 2: Energy consumption of one SCHED_DEADLINE

task with Q = C/0.9 and P = T = 100 msec.

Table 1: Fraction of missed deadlines for one

SCHED_DEADLINE task with Q = C/0.9 and P = T =
100 msec.

Resv. New DVFS Performance Schedutil
runtime

10% 0.0% 0.0% 11.5%
20% 0.0% 0.5% 47.5%
30% 0.0% 0.0% 4.7%
40% 0.0% 0.0% 43.4%
50% 0.0% 0.0% 11.3%
60% 0.0% 0.0% 3.1%
70% 0.1% 0.0% 28.6%
80% 0.0% 0.0% 13.3%
90% 0.0% 0.0% 2.8%

100% 0.0% 0.0% N. A.

in Table 1. Such figures show that both the performance
governor and the new algorithm basically miss 0 deadlines,
as expected. However, the old schedutil policy presents a
considerable number of unexpected missed deadlines. The
bad real-time performance of the previous schedutil gover-
nor (visible in Table 1) looked strange at a first glance (by
setting the CPU frequency to the maximum value when the
SCHED_DEADLINE task is executing, the schedutil governor
should be able to respect all of the deadlines). Further in-
vestigations revealed that this behavior is due to the fact
that the original schedutil governor was expecting the CPU
frequency to be switched immediately. Hence, when the
SCHED_DEADLINE task executed for an amount of time δ, its
current runtime was decreased by δ. Our new implementa-
tion, instead, always considers the current CPU frequency
(and not the requested CPU frequency) for CPU time ac-
counting, hence compensating for non-negligible frequency
switch times.

By looking at the energy consumption, it is possible to no-
tice that the new algorithm allows to considerably reduce
the energy consumption when the utilization Q/P is lower
than 70%, while maintaining a good real-time performance
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Figure 3: Percentages of time spent running

the CPU at various frequencies when running a

SCHED_DEADLINE task with Q = C/0.9 and P = T =
100 msec with the new DVFS mechanism.
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Figure 4: Percentages of time spent running

the CPU at various frequencies when running a

SCHED_DEADLINE task with Q = C/0.9 and P = T =
100 msec with the old schedutil governor.

for all the values of the utilization. In particular, our im-
plementation provides real-time performance similar to the
performance governor without a huge loss in terms of energy
efficiency.

To better understand the energy performance of the various
governors, we also recorded the CPU frequency used during
the experiments. The performance governor obviously drove
the CPU at maximum frequency for 100% of the time, while
the CPU frequencies used by the new DVFS mechanism and
by the original schedutil governor (expressed as percentages
of time in which the CPU executed at a given frequency)
are reported in Figures 3 (new DVFS mechanism) and 4
(previous schedutil governor). As it is possible to notice,
the new mechanism always tries to drive the CPU at the
“correct” frequency (using the lowest possible frequency —
144 MHz — when the CPU is idle), while the old schedutil
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Figure 5: Energy consumption of one SCHED_DEADLINE

task with Q = C and P = T =100 msec.
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Figure 6: Fraction of missed deadlines for one

SCHED_DEADLINE task with Q = C, P = T =100 msec.

governor does not make use of intermediate frequencies but
only uses the maximum and the minimum values.

More investigations revealed that the increased energy con-
sumption of the new algorithm for utilizations larger than
70% is due to the kernel thread used by schedutil. When
the utilization increases, frequency switches are triggered
more often and the kernel thread ends up consuming a con-
siderable amount of CPU time and increasing the energy
consumption.

A large number of experiments with one single periodic task
having execution time C smaller than the reserved runtime
Q have been performed, all confirming the results presented
above.

5.2 Badly dimensioned reservations
A second set of experiments further stressed the deadline
scheduler by setting the execution time C of the jobs ex-
actly equal to runtime Q of the the reservation serving the
task. The experimental results, shown in Figure 5 (energy
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Figure 7: Energy consumption of one SCHED_DEADLINE

task with Q = C/0.9 and P = T = 10 msec.

Table 2: Fraction of missed deadlines for one

SCHED_DEADLINE task with Q = C/0.9 and P = T =
10 msec.

Resv. New DVFS Performance Schedutil
runtime

10% 0.0% 0.0% 3.6%
20% 0.0% 0.0% 3.5%
30% 0.0% 0.0% 91.3%
40% 0.9% 0.0% 0.0%
50% 0.0% 0.0% 95.7%
60% 19.2% 0.0% 49.3%
70% 39.5% 0.0% 96.3%
80% 0.0% 0.0% 49.6%
90% 49.8% 0.0% 99.0%

100% 99.8% 0.0% N. A.

consumption) confirm the behavior already illustrated. On
the other hand, the percentage of missed deadlines, shown
in Figure 6, is high for all the DVFS algorithms (including
the performance governor, which does not perform frequency
scaling). This is expected, because with Q exactly equal to
C, every small variation in the execution times can result in
missed deadlines (from the theoretical point of view, it is a
meta-stable situation). In other words, this figure suggests
to slightly over-allocate the reservation with respect to the
actual task needs, even when using the default governors.

5.3 Changing the reservation periods
A third set of experiments aimed at investigating the be-
havior of the scheduler when reducing the timing granular-
ity. We have thus reduced the task period (and the SCHED_

DEADLINE reservation period) to 10ms, with the reservation’s
runtime Q ranging from 1ms to 10ms and the jobs execu-
tion time C (equal to 0.9Q) ranging from 0.9ms to 9ms.
The results in Figure 7 (energy consumption) again show a
gain in terms of energy efficiency for utilizations smaller than
U = 70%. Looking at the distribution of the misses with re-
spect to the reservation’s utilization (reported in Table 2 and
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Figure 8: Fraction of missed deadlines for one

SCHED_DEADLINE task with Q = C/0.9 and P = T =
10 msec.

plotted in Figure 8), we can see that the performance gover-
nor never misses deadlines (as expected), while the new algo-
rithm has a worse number of misses than the current schedu-
til governor for values of the reservation bandwidth higher
than 60%; the default schedutil governor, instead, gener-
ally presents a non-negligible percentage of misses. Again,
the average percentage of misses is lower using the new algo-
rithm than the governor previously available in the mainline
kernel.

5.4 Coping with frequency switch times
The difference between the theoretical algorithm behavior
(it should cause 0 deadline misses) and the actual behavior
(noticeable deadline miss percentage for utilization > 60%)
is due to the fact that the physical CPU needs some time
to switch the frequency (on the board used for the exper-
iments, it is about 1.3ms). This can be accounted for by
increasing the SCHED_DEADLINE runtime used for scheduling
the task: if the job execution time is C, the runtime has
to be set to Q ≥ C + ǫ, where ǫ is the frequency switch
time. Of course, this pessimistic assignment of the schedul-
ing parameters will admit less SCHED_DEADLINE tasks in the
system (for example, if ǫ = 3ms a task with job execution
time C = 8ms and period P = 10ms would be rejected); on
the other hand, it allows to respect more deadlines (making
the performance of the new algorithm comparable with the
ones of the performance governor for what concerns deadline
misses).

The effectiveness of this approach has been confirmed by
running some additional experiments, scheduling a periodic
task (having period P ) with SCHED_DEADLINE, reservation
period P and runtime Q, and varying the task’s execution
time. For example, Table 3 shows the percentage of missed
deadlines when P = 10ms, Q = 7ms, and the execution
time ranges from 5ms to 7ms. As it is possible to notice, the
task starts to miss deadlines for C > 5.75ms, consistently
with the fact that ǫ = 1.3ms: for C + ǫ < Q, no deadline is
missed.

Table 3: Percentage of missed deadlines for one

SCHED_DEADLINE task with Q = 7 msec and P = T =
10 msec using the new DVFS algorithm.

Task’s execution Missed
time (msec) deadlines (%)

5.00 0.0
5.25 0.0
5.50 0.0
5.75 33.0
6.00 49.3
6.25 33.5
6.50 49.7
6.75 15.2
7.00 57.2
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Figure 9: Energy consumption for four tasks with

Q = C/0.9 and P = T = 100 msec.

5.5 Using multiple cores
The next sets of experiments aimed at investigating the per-
formance when increasing the number of real-time tasks and
using more CPU cores. For these experiments, we used a
Freescale Sabre board based on a quad-core Cortex-A9 ARM
SoC are reported. The CPU cores can run at three different
frequencies: 396 MHz, 792 MHz and 996 MHz.

In the fourth test, four SCHED_DEADLINE tasks (equal to the
number of the available cores) have been executed. The four
tasks, encapsulated in different reservations, had a period of
100ms and execution time equal to 90% of their reservation’s
runtime, similarly to the first test. The experimental results,
shown in Figure 9 and Table 4, confirm the behavior already
illustrated. Additionally, we experienced a deadlock of the
target using the schedutil governor and a utilization equal
to 100%.

5.6 Soft real-time schedulability
Finally, the fifth set of experiments aimed at investigating
the behavior of the scheduler with generic tasksets (com-
posed by an even higher amount of real-time tasks). We
have therefore generated sets of eight reservations with het-
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Table 4: Fraction of missed deadlines for four tasks

with Q = C/0.9 and P = T = 100 msec.

Resv. New DVFS Performance Schedutil
runtime

10% 0.1% 0.1% 40.3%
20% 0.2% 0.1% 40.1%
30% 0.9% 0.1% 40.2%
40% 0.2% 0.1% 24.0%
50% 0.3% 0.1% 17.6%
60% 0.6% 0.2% 15.7%
70% 0.4% 0.3% 8.9%
80% 0.5% 0.6% 10.8%
90% 0.5% 0.5% 7.6%

100% 0.7% 0.5% N.A.
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Figure 10: Energy consumption for eight randomly

generated tasks with Q = C/0.9 and P = T .

erogeneous values of runtime and period, using the Rand-
fixedsum algorithm [9]. Each reservation has been used to
serve a real-time task with a runtime equal to 90% of its
reservation’s runtime. The measured values averaged over
10 consecutive runs with different sets of reservations are
shown in Figure 10 and Figure 11. Several patterns can be
observed in these figures:

• In terms of energy efficiency, the proposed scheduler
does not perform as well as the current schedutil gov-
ernor (even if still better than the performance gover-
nor).

• The real-time performance, however, was significantly
improved, as the default governor had a high percent-
age of deadline misses even for low real-time loads.

• For very high values of the reservations’ bandwidth, all
the schedulers tend to show almost the same amount
of deadline misses.

Also in this case, the proposed implementation presented
the best trade-off between energy consumption and real-time
performance.
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6. RELATED WORK
Several energy-aware scheduling algorithms have been pro-
posed in the literature during the years [26, 7]. Notice that,
although this paper focuses on embedded systems and real-
time scheduling, energy efficiency is important not only in
embedded systems, but also in other fields of computer sci-
ence (for example, in high performance computing, to reduce
the environmental impact of clusters [8]).

While some previous works used an estimation of the work-
load, based on a moving average, to drive the frequency
scaling mechanism [11], most of the previous work in the
real-time literature uses real-time schedulability analysis to
reduce the energy consumption without breaking some kind
of (hard or soft) real-time guarantees. Pillai and Shin [17]
proposed the RTDVS family of algorithms, using a static
approach (set f ′ = Ufmax) similar to the one described in
Section 3.3, and then allowing to dynamically exploit the
slack time to further decrease the CPU frequency. The pro-
posed dynamic scaling only works for periodic tasks. Ay-
din et al. [6] used a similar static scaling algorithm, and
proposed the dynamic DRA algorithms for reclaiming the
spare time on Earliest Deadline First (EDF). Again, these
dynamic algorithms are based on the periodic task model
(using this model, it is possible to know the future arrival
pattern of the task, reclaiming spare time without the risk to
break temporal constraints). A power-aware algorithm for
EDF scheduling based on dynamic voltage scaling has been
proposed by Zhu and Mueller [27] as well. In this work,
a feedback mechanism is used to cope with dynamic work-
loads. While most of the previously cited works focus on
EDF or on dynamic priorities, dynamic voltage scaling has
been applied also to schedulers based on fixed priorities, for
example by by Saewong and Rajkumar [22]. An alternative
approach can be to characterize the frequency requirements
of each application (modeling applications as set of real-time
tasks), so that compositional analysis can be applied [12].

All these works are based on the hard real-time task model,
and therefore do not fit the scenario of kernels like Linux,
that have to serve a unique mix of hard real-time tasks, soft
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real-time tasks, and non real-time tasks.

Some algorithms have been proposed for soft real-time tasks
too, for example using DVFS techniques to deliver proba-
bilistic real-time guarantees [28]. Lorch and Smith also ad-
dressed variable voltage scheduling of tasks with soft dead-
lines in [16]. Pouwelse et al. [19, 18] presented a study of
power consumption and power-aware scheduling applied to
multimedia streaming. Kumar et al. [13] proposed a predic-
tion mechanism for fixed-priority scheduling of soft periodic
tasks. However, these techniques are based on heuristics and
cannot provide guarantees to hard real-time tasks. Qadi et
al. [20] presented the DVSST algorithm that reclaims the
unused bandwidth of sporadic hard real-time tasks.

Finally, the GRUB-PA algorithm [25] takes a more gen-
eral approach, that allows supporting periodic, sporadic and
aperiodic tasks. The algorithm has shown better energy-
efficiency than most of the mentioned algorithms [25]. More-
over, it can be used to schedule both hard and soft real-time
tasks, and can be integrated in systems containing non real-
time tasks too.

While most of the previous works focused on scheduling algo-
rithms and DVFS policies, there has also been some research
on implementation issues, for example considering the im-
pact of the used frequency scaling mechanism [29] (instead
of focusing on the policy only).

Excluding some notable exceptions [5], most of the previous
work only considered single-core / single-CPU systems.

7. CONCLUSIONS
In this paper, we have described the GRUB-PA energy-
aware real-time scheduling algorithm recently integrated in
the official Linux kernel, illustrating the design issues and
the main choices that we have faced when implementing a
theoretical scheduling algorithm in a real operating system.

The experimental results measured on a real multi-core ARM
platform have shown the limits in terms of real-time perfor-
mance of the schedutil governor currently available in the
Linux kernel. They also confirmed that the proposed ap-
proach allows real-time performance similar to the perfor-
mance governor but with a lower energy consumption.

The next activities will focus on integrating with the Energy-
Aware Scheduling (EAS) project recently proposed by ARM
Ltd. and Linaro.
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ABSTRACT
Nowadays, hosting services of multiple customers on the
same hardware via virtualiation techniques is very common.
Memory deduplication allows to save physical memory by
merging identical memory pages of multiple Virtual Ma-
chines (VMs) running on the same host. However, this
mechanism can leak information on memory pages to other.
In this paper, we propose a timing-based side-channel to
identify software versions running in co-resident VMs. The
attack tests whether pages that are unique to a specific soft-
ware version are present in co-resident VMs. We evaluate
the attack in a setting without background load and in a
more realistic setting with significant background load on
the host memory. Our results indicate that, with few repe-
titions of our attack, we can precisely identify software ver-
sions within reasonable time frames and nearly independent
of the background load. Finally, we discuss potential coun-
termeasures against the presented side-channel attack.

CCS Concepts
•Security and privacy → Side-channel analysis and
countermeasures; Virtualization and security; Vul-
nerability scanners; •Computer systems organization
→ Cloud computing;

Keywords
security, side-channel attack, virtualization, cloud comput-
ing

1. INTRODUCTION
Our society relies more and more on the availability of Inter-
net services. These services are increasingly provided by vir-
tualised servers operated by cloud providers in their server
infrastructures.

Attacks on cloud providers take place all the time. However,
only few of them cause real damage. Mostly, such successful
attacks are prepared by extensive reconnaissance in which
attackers actively scan their targets. Obtaining information
about the software configuration of other VMs, other users
on the same VM, or the host operating system allows them

Copyright is held by the authors. This work is based on an earlier work: SAC’18
Proceedings of the 2018 ACM Symposium on Applied Computing, Copyright
2018 ACM 978-1-4503-5191-1. http://dx.doi.org/10.1145/3167132.3167151

to specifically exploit security vulnerabilities known to exist
in the identified software versions. Conducting vulnerability
scans in a provider’s infrastructure from virtual machines
is forbidden by the acceptable use policies of many cloud
service providers [13]. Furthermore, when such scans are
conducted via the network, they can be easily detected, e.g.
by an Intrusion Detection System (IDS). However, so-called
side-channel attacks, which do not use standard communi-
cation paths, can reveal information on a target system by
evading standard detection mechanisms at the same time.

Such side-channel attacks are a danger especially in virtu-
alised environments (e. g. [9, 11]), in which multiple virtual
machines share the same hardware. One type of side-channel
attacks in virtualised environments is based on the memory
deduplication mechanism, which identifies and merges iden-
tical memory pages. This can save large amounts of physical
memory [4, 27]. However, this mechanism can adversely af-
fect the confidentiality of data in virtual machines. Suzaki
et al. [24] have shown that it is possible to detect a software
running within another VM on the same host by writing a
copy of the binary into memory. This copy will then be dedu-
plicated by the hypervisor. When this deduplicated copy of
the binary is overwritten, this will take longer than overwrit-
ing random and non-deduplicated data. Thus, this gives an
attacker the information that another copy of the binary is
present on the host. A vulnerable software version identi-
fied in another VM does not lead to a direct attack path, as
the IP address will normally be unknown and would have
to be obtained using another method. If the IP address is
known to the attacker, however, knowing the software ver-
sion being executed enables the attacker to launch an attack
specifically targeted at vulnerabilities in this version. Also,
a vulnerable hypervisor version or a vulnerable software ver-
sion being executed by another user on the same VM will
be directly attackable.

The main contribution of this paper is a novel side-channel
attack based on memory deduplication that has already been
published by us as a conference paper [14]. The attack al-
lows a curious attacker controlling a VM to gain informa-
tion about the software configuration of (a) other co-located
VMs, (b) other users of the same VM or (c) the host op-
erating system. Our attack is based on identifying memory
pages of a software version that are unique across all other
versions of that software. Once such signature pages have
been identified, their existence in co-resident VMs can be
easily tested by loading just these pages into the memory of
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the attacker VM. Thus and contrary to related work, our at-
tack does not presume to load a software binary completely.

Our evaluation results indicate that we can distinguish soft-
ware versions to the precision of the distribution patch level.
Our attack is faster than other attacks that test whether in-
dividual pages have been deduplicated as timing differences.
It requires fewer measurements to detect versions that have a
large number of unique pages. Furthermore, memory activ-
ity has an impact on the number of measurements required:
without load, fewer measurements are required to achieve a
certain level of accuracy. For example, to achieve an accu-
racy of more than 99.9 % in the detection of the software
version with background activity on the host, at least three
measurements with a minimal signature size of five pages are
necessary. Such an attack would take at least 32 minutes.

As previous work did not analyse the impact of differences
in software versions and the underlying operating system,
we present an analysis of the effectiveness of such an attack
across different software and operating system versions. We
found that software binaries of the same upstream release
share almost no common pages across different Linux dis-
tributions. Furthermore, we have analysed the potential for
memory savings by deduplicating memory pages containing
executable code across different OS and software versions.

Compared to our former work [14], we have improved our
attack code by eliminating some of the noise observed in the
measurements. As a result, we require fewer measurements
to achieve the same level of accuracy in detecting application
versions. We also evaluate the attack under more realistic
conditions, i. e. with background load on the host. Further-
more, we more extensively discuss countermeasures against
the identified side-channel attack.

The remainder of this paper is structured as follows: In Sec-
tion 2 we discuss background information and related work.
Section 3 describes our side-channel attack. In Section 4, we
evaluate effectiveness and efficiency of the attack. Section 5
presents potential countermeasures and Section 6 concludes
the paper.

2. BACKGROUND AND RELATED WORK
In this section we first explain the concept of memory dedu-
plication as well as its implementation in popular hyper-
visors. Then, the attacker model is presented, before we
discuss how executable files are loaded on Linux. Finally,
we will discuss related work.

2.1 Memory Deduplication
Memory deduplication is a technique for saving physical
memory on a computer. It is often deployed on hosts for
virtual machines as a cost-saving measure. The memory of
a computer is organised by the operating system as a set
of memory pages M. Typically, the size of a memory page
pi ∈M is 4 096 bytes. Every memory page resident in phys-
ical memory will consume these 4 096 bytes. Memory dedu-
plication takes advantage of the fact that there are often sets
Di of multiple identical pages pi = pj ∈ M. To save mem-
ory, all but one page pm ∈ Di will be removed from the phys-
ical memory and all memory mappings ∀pi ∈ M : pi = pm

updated to point to pm instead. Subsequently, when a page
pi ∈ Di is to be changed, the deduplication mechanism
copies it to a different memory region so that it can be mod-
ified without affecting the other copies of the page.

Note that only pages actually resident in memory can be
deduplicated, whereas pages that are swapped out cannot
be deduplicated. This implies that it may not be possible
to detect some pages of a file by means of a deduplication
side-channel attack, despite the file being loaded into the
virtual memory of the host.

Figure 1 shows an example of memory deduplication. Let us
assume two VMs running on a host. Each VM is assigned
four pges of virtual memory. Without deduplication (Fig-
ure 1a) every page in the virtual memory of the two VMs
are mapped to exactly one distinct page in physical mem-
ory. When deduplication is activated (Figure 1b), it will
scan the memory and find that there are two pages of iden-
tical content. These pages are then merged into one physical
memory page, resulting in the two VMs sharing a physical
memory page.

In the following, we will describe the memory deduplication
mechanisms of the popular KVM, Xen and VMWare ESXi
hypervisors.

KVM.
The KVM hypervisor is built into the Linux kernel and uses
the “Kernel Samepage Merging” (KSM) technique [1] for
memory deduplication. The guest OSs do not have to be
modified for KSM. KSM runs in the background ans scans
the memory pages of virtual machines for identical pages,
which are then deduplicated. It will scan in specified in-
tervals. When an interval has passed, a specific number of
memory pages is scanned and, if appropriate, deduplicated.

Instead of using fixed values for interval and number of pages
to scan per interval, the ksmtuned daemon can be used [22].
It will tune the KSM configuration according to the current
memory usage on the host: The higher the memory usage is,
the more pages will be scanned per interval. When memory
usage decreases, the number of pages scanned per interval
will also be decreased. Ksmtuned also supports turning off
KSM when memory deduplication does not exceed a speci-
fied threshold.

Xen.
The Xen hypervisor provides a mechanism for sharing mem-
ory pages between VMs [5]. However, no mechanism for au-
tomatically identifying such pages is provided as part of the
hypervisor, so that this feature is of little use in practice.

However, mechanisms that enable live deduplication in Xen
have been developed by researchers. One such mechanism
is the Difference Engine proposed by Gupta et al. [8]. Sim-
ilar to KSM, it periodically scans the memory for shareable
pages. Besides deduplicating identical pages, it also sup-
ports sharing similar pages. This is achieved by storing
the difference between the deduplicated pages and patch-
ing the appropriate page when it is being accessed. Note
that, unlike deduplicating identical pages, this also causes
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Figure 1: Memory deduplication

an overhead when pages are merely being read. In addition,
it compresses unshareable pages that are not being used fre-
quently. Compared with techniques that work on identical
pages only, Difference Engine achieves higher memory sav-
ings. While the researchers originally published their code
online, the project now seems dead and the repository is no
longer available.

Another mechanism is Satori [18]. Unlike most other dedu-
plication mechanisms, it requires modifications to the guest
OS. Instead of periodically scanning the full VM memory for
shareable pages, it checks whether a page can be dedupli-
cated when it is being loaded. This means that even pages
that only remain in memory for a short period of time can
be deduplicated. However, pages that are changed to be-
come identical to another page after they have initially been
loaded into memory will not be detected. Satori allows a
guest VM to specify pages that may not be shared. This im-
plies disabling deduplication for specific memory areas and
will eliminate both memory savings as well as memory tim-
ing side-channels in respect to these pages. We were unable
to find a publicly available implementation of Satori.

VMWare ESXi.
VMWare ESXi uses its own deduplication mechanism, which
has been described by Waldspurger [27]. Similar to the KSM
mechanism used by KVM, the memory of guest VMs is regu-
larly scanned for duplicate pages to deduplicate these. Mod-
ifications to the guest OS or the disk images used by the VM
are not necessary.

2.2 Attacker Model
Our assumptions about the attacker’s capabilities are as fol-
lows: A memory deduplication side-channel attack takes
place on a host h that hosts a set of virtual machines M .
We denote the set of all versions of an application i as Ai.
Individual versions are denoted as av

i ∈ Ai, where v is used
as a version identifier. Each virtual machine mk ∈M runs a
set of application versions, which are returned by apps(mk).
The attacker controls at least one virtual machine ma ∈M .

The attacker can only observe the network traffic of ma, not
that of h or any other VM m ∈ M \ ma. The attacker’s
intention is to determine a specific version av

i ∈ Ai running
outside their scope of control.

There are three possible attack scenarios:

• Inter-VM. The attacker is trying to determine av
i of

an application Ai running on another virtual machine
mv ∈ (M \ma)

• Intra-VM. The attacker does not have root access to
ma and is trying to determine av

i of an application Ai

being executed on ma by another user.

• VM-to-host. The attacker is trying to determine av
i

of an application Ai running on the host operating
system of H.

For sake of clarity, we will concentrate on describing inter-
VM attacks in the following. The mechanisms of intra-VM
and VM-to-host attacks are identical. Intra-VM attacks
will work on all hosts where inter-VM attacks are possible.
Whether a VM-to-host attack can be performed on a host
depends on whether the deduplication mechanism dedupli-
cates pages of the host OS in addition to those of the VMs.

While the operator of a VM host trying to exploit a security
vulnerability in software of a guest VM is the worst-case
attacker, we do not consider Host-to-VM attacks. As the
host has full access to the memory of all VMs on the host,
its operator has a much easier attack path than a mem-
ory deduplication side-channel attack. Furthermore, they
would also know how to communicate with an affected VM
without having to find out the IP address using a separate
side-channel.

2.3 Loading of Executables in Linux
As described in Sect. 2.1, the content of two memory pages
must be identical for them to be deduplicated. However,
the position of the page in memory is irrelevant. Thus, we
need to know the content of an executing program’s memory
pages, but not their position in memory.
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Linux uses the Executable and Linkable Format (ELF) for
executable files. The current version of the standard is 1.2
[25]. ELF is also used by many other modern Unix operating
systems, such as FreeBSD and Solaris.

The data in an ELF file is organised in sections and seg-
ments. A file contains one or more segments. A segment
contains one or more sections. For executing a program,
only segments are relevant. An executable contains a pro-
gram header table describing the segments contained in the
file. For each segment, it contains information such as the
type of the segment, its position and size in the file, the vir-
tual memory address that it shall be loaded to and alignment
requirements.

In the following, we will describe how ELF executables are
placed into memory pages by the Linux kernel. The load-
ing mechanism for ELF files can be found in the source file
fs/binfmt elf.c. To load an ELF object file, the function
load elf binary is called. The function iterates over all en-
tries in the program header table. It checks whether the
corresponding segment is a loadable (PT LOAD) segment.
If it is, it calls the elf map function.

The elf map function then maps the specified segment into
memory. It maps full memory pages, even if the virtual
memory address specified in the program header table points
to a position within a page. If this is the case, the bytes
directly preceding the segment are loaded until the memory
page is filled. A similar approach is taken if the segment does
not end on a page boundary: The bytes directly succeeding
the segment are loaded until the page is filled.

2.4 Related Work
Data deduplication is similar to memory deduplication, but
aims to save disk space by deduplicating copies of identical
data in storage. It can be very effective (savings of 70 to 80
percent) when applied to images of similarly configured VM
images [12, 16]. However, its effectiveness is reduced for het-
erogeneous software configurations on the VMs [12]. Timing
side-channels also exist in data deduplication. They can re-
veal whether a file (or even a part of it) is already present
on a storage service through timing differences caused by
copy-on-write [9] or non-uploading of file contents [19]. Re-
searchers have proposed Message-Locked Encryption as a
countermeasure [2, 21].

Gruss et al. [6] demonstrate that it is possible to perform
a memory deduplication side-channel attack from within a
browser using JavaScript. Bosman et al. [3] apply this ap-
proach to the Microsoft Edge browser on Windows 8.1 and
10, which use memory deduplication by default. Their at-
tack does not require a virtualised environment, but targets
end-user computers. The authors show that it is feasible to
read arbitrary data from the target computer’s memory.

Irazoqui et al. [11] describe an approach to detect the ver-
sion of a cryptography library executed on a co-resident VM.
They make use of a Flush+Reload attack on functions char-
acteristic to a library. This leads to a difference in reload
time if the function has been called in another VM after
the attacker has flushed it from the cache. For the attack
to work, the page containing the attacked function needs to
be deduplicated between the attacker VM and the victim

VM. While their attack has a similar aim as ours, it uses
a different technique that requires manual analysis of the
attacked libraries to find a suitable function. Automatically
generating signatures for this type of attack would be hard
as the targeted function needs to be loaded into the cache by
the victim, which would typically be triggered by its execu-
tion. Thus, signatures would need to take into account how
likely a function is to be executed. If an automatic signature
generation mechanism targeted a function that is unique for
an application, but rarely executed (e. g. handling of an
uncommon error), this would be of little use for detecting
an application. Furthermore, as their attack targets a sin-
gle function in the library, it will be unable to distinguish
versions in which the analysed function is identical. This
implies that different functions may have to manually be
found to distinguish different pairs of versions.

Gulmezoglu et al. [7] describe a cache-based side-channel at-
tack to detect applications in co-resident virtual machines.
They use machine learning to train a classifier on the cache
usage patterns of applications. While their attack has the
advantage of not requiring memory deduplication to be ac-
tive, it is unclear whether it can be used to exactly identify
the executed version of an application.

Xiao et al. [28] show that memory deduplication can be used
to establish a covert channel for communication between two
(collaborating) co-resident virtual machines. Furthermore,
they show that memory deduplication can be used to mon-
itor the integrity of a VM’s kernel from the outside.

Suzaki et al. [24] first described a side-channel attack ex-
ploiting timing differences caused by the KSM deduplication
mechanism used in KVM. They demonstrate that it is pos-
sible to detect applications running in a co-resident VM.
However, they only analyse a single version of each tested
application. The authors do not analyse whether it is pos-
sible to tell different versions of an application apart. They
used the full binary as a signature, ignoring whether pages
may also be present in other versions of the applications or
even other parts of the system.

Owens and Wang [20] describe an approach to detect the
operating system running inside another virtual machine
hosted on the same VMWare ESXi host through a mem-
ory deduplication side-channel attack. They generate their
signatures by setting up the targeted OS versions, captur-
ing memory images of the running system and then filtering
out the memory pages unique to that OS version. However,
their approach was only tested on four different major re-
leases of Windows and two of Ubuntu Linux. The impact
of the frequently published patches for these operating sys-
tems on the accuracy of their detection mechanism was not
evaluated.

In summary, most other side-channel attacks on memory
deduplication concentrate on either revealing data in the
memory of another VM or on establishing a covert com-
munications channel between two VMs. While some ap-
proaches are concerned with detecting the presence of ap-
plications, they do not thoroughly study detecting specific
versions. The work of Owens and Wang [20], who aim to
detect versions of operating systems, is the closest to ours.
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3. MEMORY SIDE-CHANNEL ATTACK
Our memory deduplication side-channel attack is based on
timing measurements and can reveal whether pages charac-
teristic for a software version have been deduplicated. In
the following, we will describe the general approach an at-
tacker would take to identify software versions running in
other VMs. We will also describe how to find characteristic
memory pages that can serve as a signature for a specific
software version.

3.1 Attack Procedure
Memory deduplication opens up a timing side-channel that
can reveal to an attacker that a memory page holding a
certain content is present on the host, e. g. within another
virtual machine. A deduplicated page needs to be copied
before it can be modified. Thus, there is an additional delay
in modifying such a page compared to modifying a non-
deduplicated page. This delay can be used to detect the
presence of applications [24] or other data [3] in other VMs
on a host. Note, however, that it will not allow an attacker
to find out in which particular other VM the application is
running.

We define pages(av
i ) to return all pages of av

i excluding du-
plicate pages within the binary and pages containing only
zero or one bits. Each virtual machine mj ∈ M is run-
ning a set of applications Rj . An attacker is interested in
whether an application version is present in another VM,
i. e. av

i ∈ apps(M \ma). We define pages(mj) as the set of
all memory pages of a VM mj , i. e.

pages(mj) ⊇
⋃

av
i ∈Rj

pages(av
i ) (1)

The attacker first needs to establish a deduplication and a
non-deduplication baseline. To obtain the non-deduplication
baseline, the attacker fills a number of memory pages equal
to the number of pages they wish to test with random data,
so that

pages(ma) ∩ {∪m∈M\(ma)pages(m)} = ∅ (2)

It can be assumed that randomly-generated pages do not
get deduplicated as it is extremely unlikely that an identical
copy is present on the host or in another VM. The attacker
then measures the time it takes to overwrite these pages as
a baseline for non-deduplicated pages.

The assumption is that we can identify a particular appli-
cation version based on a subset of pages of that appli-
cation version av

i that are unique across all different ver-
sions of it. We refer to this subset of pages as a signature
sig(av

i ) (cf. Sect. 3.2 for details on signature derivation).
The attacker writes the signature of an application they be-
lieve to be present in another VM to the memory of their
VM ma. If another VM mv is executing av

i , this implies
{Ma ∩Mv} ⊇ sig(av

i ), which means that these pages can
be deduplicated. The attacker then needs to wait for dedu-
plication to take place. Afterwards, the attacker modifies
the pages that serve as signature and measures the time
needed for overwriting exactly these pages.

This measurement can be compared to the baselines. A
threshold for classifying measurements into deduplicated and

non-deduplicated needs to be determined. If the measure-
ment is significantly higher than the non-deduplicated base-
line and close to the deduplicated baseline, the attacker can
infer that the pages were most likely deduplicated, so that
another copy of them as part of application version av

i is
present in another VM. However, if the measurement is very
close to the non-deduplicated baseline, the pages have not
been duplicated and have been modified directly. This could
mean that another copy of the pages was indeed not present
on the host, but there is a small probability that a copy of
the pages is present on the host, but has not been scanned
by the deduplication mechanism yet, e. g. due to the dedu-
plication mechanism being configured to only activate itself
when the memory of the host is almost full. An easy and
naive classification rule would be to use the mean of the two
baselines as a threshold, which works well enough if multiple
pages are being measured at once (cf. Sect. 4.7).

To use this side-channel to detect the presence of application
version av

i on a host, an attacker would act as follows:

1. Establish baselines by writing length(sig(av
i )) pages

containing random information to the memory of ma

and measuring the time it takes to overwrite this ran-
dom information (non-deduplicated baseline). Further-
more, write two copies of randomly generated pages
into the memory of ma and overwrite one of the copies
(deduplicated baseline). The baselines should be based
on multiple measurements.

2. Determine the classification threshold based on the
baselines obtained in the previous step.

3. Write sig(av
i ) into the memory ma.

4. Wait for deduplication to happen. The correct waiting
time depends on the configuration of the host’s dedu-
plication mechanism.

5. Overwrite the signature, while measuring the time this
operation takes to complete.

6. Repeat steps 2 to 4 until a sufficient number of mea-
surements has been taken.

7. Calculate the mean of the measurements taken and
compare it to the classification threshold.

If the attacker is not interested in particular pages, but
in identifying pages that are unique to an application ver-
sion (aka signature), the full set should be written at once.
The timing differences observed between overwriting dedu-
plicated and non-deduplicated pages will be more pronounced
if multiple pages are being checked at the same time. Thus,
an attacker can identify a program running on another VM
with fewer measurements. This implies that the signatures
for a software version should consist of as many pages unique
to this version as possible.

As it is necessary to repeat the measurements several times,
and each measurement comes with a delay, the attack takes a
relatively long time. However, if the signatures to be checked
are disjunct, i. e. they do not contain any pages that are
also present in other signatures, multiple signatures can be
checked in parallel. To avoid measurements influencing each
other, the overwriting operations should not overlap. It is
not a problem to perform an overwriting measurement on
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one of the signatures while other signatures are in the wait-
ing phase, though.

The configuration of the deduplication mechanism will have
an impact on the effectiveness of any memory deduplica-
tion side-channel attacks: If the interval between scans is
long, potential attackers would be slowed down at the cost
of decreased memory savings. If, on the other hand, the
activation threshold is set relatively high, attacks will not
be possible at all as long as the host’s memory load remains
beneath the threshold.

3.2 Signatures for the Timing Side-Channel
To be able to reliably detect a software version, we need to
build signatures for each version. A signature should contain
only pages unique to the respective version, as including
pages that can also be found in other versions may lead
to false classifications. This also holds true for pages of
completely different applications. Due to the size of a page,
it is however very unlikely that an identical page can also
be found in a different application.

To derive a signature for a version of an application binary,
we start with all its pages and then remove the following
types of pages:

1. Internal duplicates because a duplicate page within
the signature itself would be sufficient to trigger dedu-
plication of these pages.

2. Pages containing only zeroes or ones, as another
copy of these is very likely to be present on the host
even if the surveyed application is not being executed
in another VM at all.

3. Pages present in other versions, as these are un-
suitable for distinguishing the version.

Any of these pages can be deduplicated without the probed
version being present in another VM. Therefore, they must
be removed to avoid false positives. In summary, the signa-
ture for an application version av

i is generated as follows:

sig(av
i ) = pages(av

i )−
⋃

a∈{Ai\av
i }

a (3)

Our approach for deriving signatures is similar to the one
for detecting operating systems by Owens and Wang [20].
In their approach, they capture memory images of differ-
ent OSs while executing them. Then, they derive signa-
tures from these that contain pages unique among their OS
dataset. Similar to their work, we aim to find memory pages
that are unique to an application instead of an OS version
to use them as signature. However, we consider the pages of
the application binary only and can ignore all pages contain-
ing application data pertaining to the runtime state. Thus,
any pages that do not contain executable code, such as data
pages, are ignored. These pages may differ between two
instances of an identical binary, e. g. due to a different run-
time state, or may be identical for two different versions of a
binary, e. g. due to a similar runtime state saved in a mem-
ory structure that has not been changed between versions.
Thus, they are not well-suited for detecting the application
version being executed.

Focusing on only the pages of the application binary renders
our technique much more efficient compared to the work of
Owens and Wang. These binary pages are the only pages
that can safely be assumed to reside in memory on all sys-
tems executing it. Moreover, binaries need not be executed
to generate signatures in the form of unique memory pages.
Thus, in the following, we can use these signatures to specif-
ically test via our side-channel attack described in Section
3.1 if there is an application running that matches the sig-
nature, i. e. contains the signature pages.

In the next section, we summarise our findings in evaluating
the proposed side-channel attack.

4. EVALUATION
In this section, we first present the tools and datasets that
we have created for our experiments. Also, we describe ex-
periments that indicate that a timing side-channel exists
that can reveal whether pages of an application are present
within another VM. We then present experiments that in-
dicate that versions of the same application are different
enough from each other to detect them with this method.
Furthermore, our experiments indicate that releases of the
same upstream version from different distributions can easily
be distinguished, too. We also analyse the impact of chang-
ing the page size on the deduplication of pages containing
executable code. Finally, we present an analysis on the com-
plexity of our attack before discussing the limitations of our
approach.

4.1 Signature Generation and Measurements
To derive signatures and enable the experiments described
in the reminder of this paper, tools have been developed
that allow the automatic comparison of a large number of
versions of a binary1.

To analyse a software, we first need to obtain its different
versions. Then, the main binary has to be extracted from the
downloaded packages. To this end, shell scripts have been
developed that can extract the binaries from RPM and deb
packages. The scripts can easily be adapted to each appli-
cation and distribution and will then process a large range
of versions, as the location and name of a binary within the
package rarely changes. The scripts will place the extracted
binaries into a directory structure that can be processed by
our analysis tool.

The main analysis tool is written in Java and can process
ELF binaries, but can easily be extended to other executable
formats as well. It supports two modes of analysis: First, all
versions of a binary can be compared with each other to
determine the number of matching pages between each pair
of versions. Results will be output as a csv file. Second, the
software can output the signature for each version, which
will contain all pages unique to that version (cf. Sect. 3.2).
Statistics about the signatures will also be created and saved
in a csv file. These include the signature sizes, the number
of internal duplicates, the number of pages that can also be
found in other versions, and the number of pages containing

1The code of our tools is available at
https://github.com/jl3/memdedup-app-detection.
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only zeroes or ones. The page size used by the tool can be
configured freely.

Furthermore, two C programs have been developed to per-
form timing measurements. The first one loads signature
pages into memory and measures the time it takes to over-
write them after a specified amount of time has passed. Mea-
surements will be output to the console and logged into a
file. This tool has been improved in comparison with the
version used in our former work [14]. The old version was
susceptible to noise from disk I/O, which has been removed
by pre-caching the data that is to be loaded into memory
when overwriting. The second one loads signature pages into
memory aligned to page boundaries to enable experiments
that do not use a running executable.

4.2 Datasets
We created three datasets for our experiments: The first
one contains all Apache web server releases for Debian on
the x86 64 platform and the second one all SSH daemon
(sshd) releases. The third dataset contains releases of sshd
7.9p1 for different distributions. Our datasets consist of the
following application versions:

• The Apache-Debian-x86 64 dataset consists of all
160 Debian releases of Apache available for the x86-64
platform and includes versions from 2.2.11-5 to 2.4.37-1.

• The sshd-Debian-x86 64 dataset consists of all 211
Debian releases of sshd available for the x86-64 plat-
form and includes versions from 4.2p1-7 to 7.9p1-4.

• The sshd-crossdist dataset consists of 10 package
versions of sshd 7.9p1 from Arch Linux, Debian, Fe-
dora, Mageia and Ubuntu. Multiple revisions are in-
cluded for Debian (3) and Fedora (4).

Our datasets contain only the main executable of each appli-
cation (httpd for Apache, sshd for the SSH daemon). For the
surveyed applications, these are typically the only executa-
bles that will be running as a daemon at all times. While
both applications include additional executables (e. g. ssh-
keygen for generating SSH keypairs), these would normally
not be running long enough for the described attack to be
possible. In case of packages containing multiple executables
to be run constantly (e. g. as a daemon), all these executa-
bles should be included when generating signatures.

The packages for the Debian-based datasets were obtained
from the snapshot archive2, which provides historic pack-
age versions. A similar repository of old package versions is
available for Fedora3, which retains old versions of binary
packages and keeps them publicly available.

Unfortunately, most distributions, among them openSUSE,
OpenMandriva, Ubuntu and Arch, provide only very recent
versions of the binary packages. This makes it hard to create
a dataset that can be applied to other distributions as well.
For the cross-distribution dataset, due to the lack of older
versions of binary packages for many distributions, we had
to use the recent upstream version 7.9p1 of sshd, which was

2http://snapshot.debian.org
3https://koji.fedoraproject.org/koji/
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available for download for a variety of distributions at the
time of dataset creation.

4.3 Feasibility of the Side-Channel
In the following, we will show that a timing side-channel in
memory deduplication exists that can be used to reveal the
presence of memory pages in another VM or on the host.

For the experiments described in this section, two virtual
machines ma and mv are used. The host is an Intel Core i7-
4790 with 16 GiB RAM running KVM and KSM on Fedora
26. First, a number of pages is loaded into the memory of
mv. Then, the same pages are loaded into ma. After that,
we wait for deduplication to take place and overwrite the
pages in the memory of ma, measuring the time this takes.

Figure 2 shows the write times to sets of non-deduplicated
and deduplicated pages depending on the number of pages in
the respective application. All results in the figure are aver-
aged over 1 000 measurements each. In the non-deduplication
case, the pages on ma and mv are of identical size, but have
different contents, so that no deduplication can take place.
In the deduplication case, the pages on ma and mv are iden-
tical, so they can be deduplicated.

Write times to deduplicated pages are higher than to non-
deduplicated pages. For both types of pages, write time in-
creases linearly with the number of pages overwritten. The
gap in write times between non-deduplicated and fully dedu-
plicated sets of pages increases when writing to a larger num-
ber of pages. This implies that when we measure the time to
overwrite a larger number of pages at once, it will be easier
to determine whether these pages have been deduplicated
previously.

Figure 3a shows a histogram of 1 000 write times each for a
single deduplicated or non-deduplicated page without back-
ground load on the system. As expected, the write times
to non-deduplicated pages are typically lower than those
to deduplicated pages. However, when overwriting a single
page, some of the slower measurements for non-deduplicated
pages fall into the same range as some of the faster measure-
ments for deduplicated pages. This implies that performing
a single measurement only will not be sufficient to reliably
distinguish the two cases and thus determine whether an-
other copy of the page is present on the host. Figure 3c
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shows the write times with background load, generated by
running six instances of memtester 4.3.0 on the host while
performing the measurements. While write times to non-
deduplicated pages are still lower on average than those to
deduplicated pages, measurements for both are spread out
over a significantly larger range of times and overlap more.
This makes the two cases harder to tell apart.

Figure 3b shows a histogram of 1 000 write times each for
100 deduplicated or non-deduplicated pages without back-
ground load on the system. As with the single pages, over-
writing 100 deduplicated pages takes longer than overwriting
100 non-deduplicated pages. However, the measurements do
not overlap. This implies that we could reliably distinguish
whether a 100-page signature is present on the host based
on a single measurement only in our test setup. Figure 3d
shows shows the write times for 100 pages with background
load. As for single pages, these are spread out over a wider
range of times. However, they do not overlap and could still
be distinguished reliably based on a single measurement.

4.4 Cross-version Similarities
We now present our analysis on cross-version similarities in
the Apache-Debian-x86 64 and sshd-Debian-x86 64 datasets.

For that, we directly compare each version to every other
version available. This direct comparison shows how many
pages are identical among two specific versions. The more
pages are identical, the harder it will be for an attacker to
distinguish these versions from each other using our side-
channel attack. However, a larger number of identical pages
also implies that deduplication can save more memory.

Furthermore, we determine the number of pages that can
be used as signature for each application version in our
datasets. We also analyse how many pages have not been
used for deriving signatures (cf. Section 3.2).

Figure 4a shows the number of matching pages between all
versions for the Apache-Debian-x86 64 dataset. Figure 5a
shows the number of matching pages between all versions
in the sshd-Debian-x86 64 dataset. Each row and column
corresponds to one version, namely from old versions on the
top left to new versions on the bottom right. The colour
at the intersection of the row corresponding to version vr
and the column corresponding to version vc represents the
number of pages in the binary of vr that are also present
in the binary of vc. The bright diagonal line running from
the top left to the bottom right represents the comparison
of a version with itself (vr = vc) and shows the size of the
respective version’s binary in pages. It can be seen that
newer versions of the binaries are larger than older ones.

The results indicate that some versions form clusters, whose
binaries are relatively similar to each other. For the Apache
dataset, these clusters correspond to multiple Debian revi-
sions of an upstream version. An example of a range of ver-
sions whose binaries are very similar to each other is 2.2.16-1
to 2.2.16-6. However, the backport revisions corresponding
to this upstream version are completely different and share
only a single page with the non-backport versions. Further
examples of similar binary versions are 2.2.22-6 to 2.2.22-
13+deb7u2 and 2.4.10-1 to 2.4.10-9. While all versions in
these clusters share more than 20 pages with each other,

both clusters contain inner clusters of versions even more
similar to each other. For example, while the versions in the
former cluster all share at least 28 pages with each other,
versions 2.2.22-7 to 2.2.22-10 share almost all their pages
with each other. Figure 4b gives a detailed view of this clus-
ter and shows how many of the pages in version 2.2.22-9 can
also be found in each neighbouring version.

The clusters in the sshd dataset are similar in size and are
also restricted to versions that have been released close to
each other. Interestingly, while most of these clusters also
contain only different Debian revisions of the same upstream
software version, the sshd dataset – unlike the Apache dataset
– contains a few clusters stretching across different upstream
versions. While most of these span versions corresponding to
directly adjacent upstream releases (e. g. 5.4p1 and 5.5p1),
there are also clusters of slightly more distant versions. One
notable example of this is the cluster comprising versions
7.2p2-6 to 7.2p2-8 as well as 7.4p1-1 to 7.4p1-5, which are
more similar to each other in terms of memory pages than
to the versions between. A detailed view of this cluster is
shown in Figure 5b.

The results indicate that almost no similarities exist between
binaries of packages across different upstream versions. The
results also indicate that memory savings by means of dedu-
plicating binaries of Apache on Debian x86-64 can only be
achieved if multiple instances of the same upstream version
and ideally the same or a very close Debian revision are be-
ing executed on the host. For sshd, limited sharing potential
exists between releases of some close upstream versions.

Figure 6a shows how many memory pages can be used in a
signature for a binary of the Apache-Debian-x86 64 dataset.
The values are calculated on the assumption that signatures
shall be used to identify not only the upstream version, but
also the exact Debian patch level of the binary. The figure
also shows how many pages of the binary are contained more
than once within the binary or contain only zeroes or ones.
It is also shown how many of the remaining pages are also
contained in other versions of the binary. The remaining
pages can be used as a signature. Figure 6b shows the results
for the sshd-Debian-x86 64 dataset.

The results show that the size of the signature is large for
many of the versions surveyed as they contain many unique
pages. These versions can be precisely identified using our
attack.

However, the size of the signature is small for many other
versions. Due to the timing difference observed in a memory
deduplication attack being far less pronounced for shorter
signatures, it will be hard to identify these versions to the
precision of a specific Debian revision. Signature size can
be increased by grouping some of the affected versions with
neighbouring versions and by creating a signature that de-
scribes the group. This reduces the precision of the version
identification, but will make the memory deduplication at-
tack easier to perform.

4.5 Inter-distribution Similarities
We now analyse whether signatures derived from the bina-
ries of one Linux distribution can also be used to detect the
version of the same software on another distribution. To
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Figure 3: Histogram of write times (in microseconds) to deduplicated and non-deduplicated pages

this end, we compared binaries of the same software version
from packages of several distributions in the same way as
described in Sect. 4.4. Our experiments are based on the
sshd-crossdist dataset.

Figure 7 shows the number of duplicate pages between the
different binaries. It can be seen that the binaries dis-
tributed by Debian are very similar to each other. Fur-
thermore, the Fedora releases are relatively similar to each
other. We found release 7.9p1-1 for Fedora 29 to be more
similar to 7.9p1-1 for Fedora 30 than to the 7.9p1-2 releases
for both Fedora 29 and 30. The Debian and Ubuntu re-
leases share five to seven pages with each other. All other
cross-distribution pairs of releases exhibit no similarities.

4.6 Influence of Page Size
In the following, we will present an analysis on the influ-
ence of changing the page size on the effectiveness of our
attack and the memory saving potential of deduplicating ex-
ecutable code. To analyse whether decreasing the page size
from the standard of 4 096 bytes increases the proportion of
binaries that can be deduplicated, we analyse the number of
matching pages across versions of the Apache-Debian-x86-
64 dataset for non-standard page sizes in the same way as
described in Sect. 4.4.

The results of the experiment are shown in Figure 8. We
divide all pairs of versions into two categories: high-sharing
pairs (≥ 5% of pages shareable) and low-sharing pairs (< 5%

of pages shareable). The results indicate that reducing the
page size increases the percentage of shareable pages for
pairs of versions that were already similar at standard page
size. However, sharing opportunities remain almost un-
changed for lower page sizes.

4.7 Attack Complexity
We will now analyse how long it takes to perform our attack.
The duration for a successful run of our side-channel attack
depends on the configuration of the deduplication mecha-
nism and on the desired accuracy of the results.

How long it takes to perform a single measurement is defined
by the time an attacker has to wait for deduplication to take
place, which depends on how long the deduplication mecha-
nism requires to scan the complete memory. In its standard
configuration on Fedora 26 and RHEL 7.4, the ksmtuned
daemon, which automatically configures KSM (cf. Sect. 2.1)
according to memory usage, scans at least 1/65536 of the
physical memory, i. e. it will take at most 655.36 seconds
until all of a machine’s memory has been scanned. For the
remainder of this section, we will assume this as the time an
attacker has to wait for deduplication to take place.

In the following, we want to establish which accuracy can
be achieved depending on the signature size and the num-
ber of measurements performed (i. e. the time needed for
the attack). As in Sect. 4.3, our test setup includes two
VMs ma and mv. We first created a training dataset that
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Figure 4: Cross-version similarities – Apache-Debian-x86 64 dataset

was used to determine the classification threshold. As in a
real attack (cf. step 1 in the attack procedure in Sect. 3),
we loaded n pages into the memory of ma. As the con-
crete content of the pages is irrelevant for this experiment,
pages were generated randomly. Then, we loaded the same
n pages into memory again as well as n pages filled with
different data. After waiting for the deduplication to occur,
we measure the time it takes to overwrite each set of pages.
This process is performed 1 000 times, so that we have 1 000
training measurements for both the deduplicated and the
non-deduplicated case. Note that this number of training
measurements is not unrealistic in an actual attack, as mea-
surements can be taken in parallel if different sets of data
are used. The approach for creating our test dataset is iden-
tical except that the pages that are to be deduplicated are
loaded into the memory of mv (and later into ma’s memory
only once).

We perform our experiments in two scenarios: In the first
scenario, only ma and mv are active on the host system. The
VMs run only the OS and our analysis tools. The host was
only running the base system and the two VMs. No further
VMs were active. This ensures that there is relatively little
load on the memory of the host that is not attributed to the
measurements themselves.

In the second scenario, we simulate background memory ac-
tivity on the host. As in the first scenario, the attack (ma)
and victim (mv) VMs were active and no further VMs were
active. However, in addition to the base system and the two
VMs, the host was concurrently executing six instances of
memtester 4.3.0. Each instance was configured to use 1 GiB
of memory and run in an infinite loop. This ensures that
there were constantly read and write accesses being made
to the physical memory of the host.

To probe a signature, multiple measurements should be per-
formed to increase the accuracy of the results. The time this
takes for one signature depends on the desired accuracy of
the results. Figure 9a shows the impact of the number of
measurements performed and the size of the signature on the
accuracy of our version detection mechanism when there is
no background load on the system. We calculated the mean
of the training measurements for each test case to act as a
baseline for classification (cf. Sect. 3.1). For different values
of m, we then took 10 000 000 random samples of m measure-
ments each from all our test cases and checked whether the
mean of the sample was classified correctly. The accuracy
value shown is aggregated over both the deduplicated and
the non-deduplicated test case. As this classification rule is
relatively simple, the accuracy values can be considered a
lower bound of what is possible.

It can be seen that measuring multiple pages at once in-
creases the accuracy. Thus, measurements should be per-
formed based on signatures that contain all pages unique
among the different versions of that application. Also, accu-
racy increases with the number of measurements performed.
However, even a single deduplicated page in a set of non-
deduplicated page will increase the write time and can lead
to false classifications. Therefore, signatures should be as
large as possible, but not contain any pages that are also
present in other versions. In the best case, every version has
completely different pages, so that all of them can be used
as a signature.

Without background load on the host, relatively few mea-
surements are required to achieve a high accuracy even for
small signatures: For signatures of a single page, six mea-
surements were needed for an accuracy of ≥ 99.9%. For
larger signatures, fewer measurements were needed to achieve
a similar level of accuracy, e. g. three measurements for sig-
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Figure 5: Cross-version similarities – sshd-Debian-x86 64 dataset

natures of two pages and two measurements for signatures
of five pages or more.

Under load, the number of measurements required to achieve
a certain level of accuracy increases, as shown in Figure 9b.
In our experiments, nine measurements were required to
achieve an accuracy of ≥ 99.9% for single-page signatures.
For two-page signatures, we were able to achieve this level of
accuracy with six measurements, while three measurements
were sufficient for signatures of five pages.

For example, if six measurements are desired, it takes about
66 minutes to probe the signature pages. Increasing the
number of measurements increases the time linearly. To
probe all signatures of the sshd-Debian-x86 64 dataset con-
secutively takes about eight days if six measurements are
performed per signature. However, as our signature pages
are disjunct in between different application versions, they
can actually be probed in parallel if enough memory is avail-
able in the attack VM va. This reduces the time to about
66 minutes, the same time it takes to probe a single signa-
ture. For that, all signatures are loaded into the memory
of va at once. The attacker must then wait for deduplica-
tion to occur. Afterwards, the timing measurements can be
performed consecutively. Each of them takes a fraction of a
second. This process can then be repeated multiple times to
achieve the desired number of measurements per signature.

To further reduce the number of measurements required,
similar versions can be grouped [15]. This results in larger
signatures and eliminates all small signatures for our datasets.
While this means that an attacker can no longer identify the
exact version and distribution patch level of an application,
we found that for our datasets, almost all groups contain
only different distribution patch level releases belonging to
the same upstream version released by the original develop-
ers of the software. The only exception from this was a group

in the sshd-Debian-x86 64 dataset, which contained three
versions from two neighbouring upstream versions. Thus,
the versions in a group are likely to contain similar secu-
rity vulnerabilities, which means that for most attackers,
the version can still be identified precisely enough if groups
are formed.

4.8 Limitations
In the following, we discuss some limitations to the presented
side-channel attack.

Attacker does not know IP of co-resident VMs.
The attack presented in this paper allows an attacker to find
out whether a specific version of an application is running
in another VM that is co-resident on the host. However, it
does not allow an attacker to find out in which specific VM
the application is being executed. It also does not provide
any information on how to contact the VM that runs the
identified application, which is necessary to exploit a po-
tential security vulnerability. If an attacker is interested in
attacking a specific online service, they may try to obtain a
VM that is co-resident with a VM hosting it. Varadarajan
et al. [26] have shown that this is realistic in public cloud
environments. Depending on a cloud service provider’s in-
frastructure, IP addresses may also be correlated with the
placement and type of VMs [23], which would allow an at-
tacker to increase its chances of obtaining a co-resident VM
by choosing the deployment zone and instance type accord-
ingly. This may also help an attacker that does not have
a specific target in mind in narrowing down potential IP
addresses of vulnerable co-resident VMs. For that, the at-
tacker can randomly spawn attack VMs to find vulnerable
VMs.
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Memory deduplication must be active.
Our attack assumes that deduplication is activated on the
host. Nowadays, many of the larger public cloud service
providers such as Google [10] have turned off memory dedu-
plication in fear of side-channel attacks. However, the tech-
nique can offer large memory savings [4, 27], which makes
it attractive to server operators. This is especially true in
environments where users of VMs are believed to be at least
somewhat trustworthy, e. g. in private clouds.

Application versions might be indistinguishable.
Another assumption is that application versions are suffi-
ciently different from each other. For the datasets we sur-
veyed, this is the case. When generating signatures for in-
dividual application versions in our dataset, all signatures
contain at least one page. This implies that all versions can
be differentiated. Theoretically, however, it is possible for
the signature generation to fail. This could be caused by
two identical binaries in two different versions of a package,
e. g. if only a default configuration file was changed between

the package versions. It can also be caused by a version
containing only pages that are also present in multiple dif-
ferent other versions, e. g. v1 = {a, b, c}, v2 = {a, d, e}, v3 =
{b, c, f} will lead to the signature generation for version v1
failing. Such situations can be resolved by creating group
signatures [15] for the affected versions.

Our experiments were conducted on Linux only.
Experiments were only conducted for the Linux OS, which is
dominant in cloud environments. However, we believe that
our results are applicable to other operating systems as well.
Most Unix-based OSs use the ELF file format for their exe-
cutables and will employ a very similar loading mechanism
to Linux. Adapting the attack to another OS requires tak-
ing into account how executables are structured and loaded
on that system. For example, Windows uses the Portable
Executable (PE) format [17] for its executables. For PE
files, sections are loaded instead of segments. Sections are
described in a similar header table as in ELF files, which
can be used as a base for analysing a PE executable.
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5. COUNTERMEASURES
In this section we discuss potential countermeasures against
the presented attack. On the one hand, some of these aim at
removing the side-channel altogether, but will also remove
the memory savings offered by deduplication. On the other
hand, some countermeasures aim at reducing the effective-
ness of attacks without fully eliminating the side-channel.

Deactivating Memory Deduplication.
The easiest way of avoiding side-channel attacks by memory
deduplication is to turn this feature off. However, this comes
at the cost of eliminating all memory savings by deduplicat-
ing memory pages. Alternatively, this feature gets disabled
only for pages belonging to executable binaries. According
to our results, this will only require significantly more phys-
ical memory on systems hosting a large number of VMs that
all run very similar software. However, modifications to the
hypervisor and guest OS would be necessary to make them
aware whether a page actually belongs to a binary.

Slow down writes to non-deduplicated pages.
Another approach that the operator of the host can take
would be to slow down writes to non-deduplicated memory
pages. If write operations are slowed down to the level of
deduplicated pages, the side-channel is eliminated. However,
this requires significant modifications to be made to the host
operating system as write operations to non-deduplicated
pages will normally not pass through the deduplication mech-
anism. This should not affect the performance of read-heavy
workload, but it is unclear how large the adverse effect on
performance for more write-heavy workloads would be.
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Obfuscate Memory.
If a user who merely rents a VM on a host whose configu-
ration they cannot control wants to prevent memory dedu-
plication side-channel attacks on their VM, a possible solu-
tion would be to obfuscate the VM’s memory. This could be
achieved by deploying an Address Space Layout Randomiza-
tion technique that – unlike the standard Linux implementa-
tion – does not only shuffle pages in memory, but randomises
the memory contents on the sub-page level. This would en-
sure that all bits of the start address of a segment of an ELF
segment are random. Therefore, the alignment of the seg-
ment’s contents to page boundaries would be randomised,
resulting in 4 096 possible alignments. As two pages will
only be deduplicated if they match entirely, a different align-
ment prevents deduplication. An attacker could thus not
simply use signatures as described in this paper. The attack
would need to take all possible alignments of an application’s
pages into account, i. e. attackers would need to probe 4 096
times as many signatures. While these signatures can still
be checked in parallel, this requires a lot more memory. If
not enough memory is available, some signatures will have to
be checked sequentially, increasing the time for the attack.

Modify Binaries.
Another solution would be to slightly modify all executed
binaries. This can be achieved without recompiling by in-
serting randomly-placed NOP opcodes into an application’s
binary. Alternatively, it should also be sufficient to com-
pile the programs manually with some less commonly used
compile options considering that the binaries released by dif-
ferent distributions are based on the same upstream version
are highly different in their memory pages.

Encryption.
The user of a VM can also encrypt its memory. However,
all of these techniques will make it very hard or impossi-
ble for the hypervisor to deduplicate memory pages, thus
preventing memory savings.
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Decoy Signatures.
Instead of preventing the side-channel attack outright, it
would also be possible to deceive attackers by placing pages
of binaries that are not actually running on any VM or the
host into memory, e. g. pages that are contained in our sig-
natures. This can be done by either the operator of the
host or anyone controlling a VM on the host. While an
attacker would still be able to detect the presence of soft-
ware versions that are being executed, this would come with
a certain number of false positives. An effective defence
by such an approach would require much more memory to
load a signatures for many versions of many applications. It
may, however, be suitable to prevent that an attacker gets
to know the exact version of a specific sensitive application
from memory deduplication attacks. It is not a replacement
for regularly updating the system, though: In case of a lack
of updates of both the application and the decoy signatures,
an attacker would still be able to establish an upper bound
on the application version.

6. CONCLUSION
We have introduced a novel side-channel attack that is based
on memory deduplication and that can detect software ver-

sions on co-resident VMs. We can even identify versions
to the precision of a specific distribution patch level of an
upstream release. This provides valuable knowledge to an
attacker, who can perform attacks targeting specific vulner-
abilities in the software versions that were detected by the
side-channel attack. No significant similarities were found
between binaries from different distributions that were based
on the same upstream release. This means that releases of
the same upstream software version from different distribu-
tions can be easily distinguished. It also implies that the
potential for memory savings by deduplicating executable
code is limited for computers hosting VMs with homoge-
neous software configurations. Changes to the page size
increase deduplication potential only for pairs of versions
that already share a significant number of pages at standard
page size, i. e. only for some pairs of releases of the same or
neighbouring upstream versions by the same OS and distri-
butions.

Our results indicate that we can detect the presence of a
signature of five pages or more in another VM or on the
host with a reasonable amount of three measurements with
an accuracy of≥ 99.9% even if there is significant load on the
memory of the host. However, an actual attack takes time
and for three measurements it will take about 32 minutes.

The side-channel can be prevented by disabling memory
deduplication across multiple VMs – either completely or by
modifying the deduplication mechanism to only not dedu-
plicate executable code.

Possible future work includes studying a broader range of
applications and extending the study to other operating sys-
tems, such as Windows. Furthermore, more advanced mit-
igation strategies should be developed to enable memory
deduplication to take place without leaking information to
other VMs.
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ClouDedup: Secure deduplication with encrypted data
for cloud storage. In Cloud Computing Technology and
Science (CloudCom), pages 363–370, 2013.

[22] Red Hat. Kernel Same-Page Merging (KSM). In: Red
Hat Enterprise Linux 7 Virtualization and
Optimization Guide.

[23] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.
Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds. In ACM
Conference on Computer and Communications
Security (CCS), pages 199–212, 2009.

[24] K. Suzaki, K. Iijima, T. Yagi, and C. Artho. Memory
deduplication as a threat to the guest OS. In European
Workshop on System Security (EUROSEC), 2011.

[25] Tool Interface Standards (TIS) Committee.
Executable and Linking Format (ELF) Specification
Version 1.2. 1995.

[26] V. Varadarajan, Y. Zhang, T. Ristenpart, and M. M.
Swift. A placement vulnerability study in multi-tenant
public clouds. In USENIX Security, 2015, pages
913–928, 2015.

[27] C. A. Waldspurger. Memory Resource Management in
VMware ESX Server. In Symposium on Operating
System Design and Implementation (OSDI), 2002.

[28] J. Xiao, Z. Xu, H. Huang, and H. Wang. Security
implications of memory deduplication in a virtualized
environment. In IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages
1–12, 2013.

APPLIED COMPUTING REVIEW  DEC. 2018,  VOL. 18,  NO. 4 45



ABOUT THE AUTHORS: 

Jens Lindemann is a research associate and PhD student in the Security in 
Distributed Systems research group at the University of Hamburg. Previously, he 
studied Information Systems and IT-Management and -Consulting at the University 
of Hamburg, during which he spent one semester abroad at the School of Computer 
Science at the University of St Andrews. His research interests include IT and 
network security, virtualization and privacy. 

Mathias is an assistant professor at the University Hamburg since September 2016. 
Before that, he was an assistant professor at the University Münster (2015-16), a 
Postdoc at the International Computer Science Institute (ICSI) / UC Berkeley (2014-
15), and Postdoc at the Center for Advanced Security Research Darmstadt (CASED) 
/ TU Darmstadt from (2012-14). His research interests encompass IT and network 
security, resilient distributed systems, network monitoring, and botnets. Mathias 
received a PhD in 2012 and a diploma in computer science in 2008, both from TU 
Ilmenau. 

APPLIED COMPUTING REVIEW  DEC. 2018,  VOL. 18,  NO. 4 46



OOlong: A Concurrent Object Calculus for Extensibility
and Reuse

Elias Castegren
KTH Royal Institute of Technology

Kista, Sweden
eliasca@kth.se

Tobias Wrigstad
Uppsala University
Uppsala, Sweden

tobias.wrigstad@it.uu.se

ABSTRACT
We present OOlong, an object calculus with interface in-
heritance, structured concurrency and locks. The goal of
the calculus is extensibility and reuse. The semantics are
therefore available in a version for LATEX typesetting (written
in Ott), a mechanised version for doing rigorous proofs in
Coq, and a prototype interpreter (written in OCaml) for
typechecking an running OOlong programs.

CCS Concepts
•Theory of computation → Operational semantics; Concur-
rency; Interactive proof systems; •Software and its engineer-
ing → Object oriented languages; Concurrent programming
structures; Interpreters;

Keywords
Object Calculi; Semantics; Mechanisation; Concurrency

1. INTRODUCTION
When reasoning about object-oriented programming, object
calculi are a useful tool for abstracting away many of the
complicated details of a full-blown programming language.
They provide a context for prototyping in which proving
soundness or other interesting properties of a language is
doable with reasonable effort.

The level of detail depends on which concepts are under study.
One of the most used calculi is Featherweight Java, which
models inheritance but completely abstracts away mutable
state [14]. The lack of state makes it unsuitable for reasoning
about any language feature which entails object mutation,
and many later extensions of the calculus re-adds state as a
first step. Other proposals have also arisen as contenders for
having “just the right level of detail” [3, 18, 26].

This paper introduces OOlong, a small, imperative object
calculus for the multi-core age. Rather than modelling a
specific language, OOlong aims to model object-oriented
programming in general, with the goal of being extensible
and reusable. To keep subtyping simple, OOlong uses in-
terfaces and omits class inheritance and method overriding.

Copyright is held by the authors. This work is based on an earlier work: SAC’18
Proceedings of the 2018 ACM Symposium on Applied Computing, Copyright
2018 ACM 978-1-4503-5191-1. http://dx.doi.org/10.1145/3167132.3167243

This avoids tying the language to a specific model of class
inheritance (e.g., Java’s), while still maintaining an object-
oriented style of programming. Concurrency is modeled in a
finish/async style, and synchronisation is handled via locks.

The semantics are provided both on paper and in a mecha-
nised version written in Coq. The paper version of OOlong
is defined in Ott [25], and all typing rules in this paper are
generated from this definition. To make it easy for other
researchers to build on OOlong, we are making the sources
of both versions of the semantics publicly available. We also
provide a prototype interpreter written in OCaml.

With the goal of extensibility and re-usability, we make the
following contributions:

• We define the formal semantics of OOlong, motivate the
choice of features, and prove type soundness (Sections
2–5).

• We provide a mechanised version of the full semantics
and soundness proof, written in Coq (Section 6).

• We provide Ott sources for easily extending the paper
version of the semantics and generating typing rules in
LATEX (Section 7).

• We give three examples of how OOlong can be extended;
support for assertions, more fine-grained locking based
on regions, and type-level tracking of null references
(Section 8).

• We present the implementation of a simple prototype
interpreter to allow automatic type checking and evalu-
ation of OOlong programs. It provides a starting point
for additional prototyping of extensions (Section 9).

This paper is an extended version of previous work [7]. Apart
from minor additions and improvements, the section on
the mechanised semantics has been expanded (Section 6).
The extension to track null references through types is new
(Section 8.3), and the prototype OOlong interpreter has not
been described before (Section 9).

2. RELATED WORK
The main source of inspiration for OOlong is Welterweight
Java by Östlund and Wrigstad [18], a concurrent core calculus
for Java with ease of reuse as an explicit goal. Welterweight
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FJ ClJ ConJ MJ LJ WJ OOlong

State × × × × × ×
Statements × × ×
Expressions × × × × ×

Class Inheritance × × × × × ×
Interfaces × ×

Concurrency × × ×
Stack × ×

Mechanised ×∗ × ×
LATEX sources × × ×

Figure 1: A comparison between Featherweight Java, Clas-
sicJava, ConcurrentJava, Middleweight Java, Lightweight
Java, Welterweight Java and OOlong.

Java is also defined in Ott, which facilitates simple extension
and LATEX typesetting, but only exists as a calculus on paper.
There is no online resource for accessing the Ott sources,
and no published proofs except for the sketches in the origi-
nal treatise. OOlong provides Ott sources and is also fully
mechanised in Coq, increasing reliability. Having a proof
that can be extended along with the semantics also improves
re-usability. Both the Ott sources and the mechanised se-
mantics are publicly available online [5]. OOlong is more
lightweight than Welterweight Java by omitting mutable vari-
ables and using a single flat stack frame instead of modelling
the call stack. Also, OOlong is expression-based whereas
Welterweight Java is statement-based, making the OOlong
syntax more flexible. We believe that all these things make
OOlong easier to reason and prove things about, and more
suitable for extension than Welterweight Java.

Object calculi are used regularly as a means of exploring and
proving properties about language semantics. These calculi
are often tailored for some special purpose, e.g., the calculus
of dependent object types [1], which aims to act as a core
calculus for Scala, or OrcO [19], which adds objects to the
concurrent-by-default language Orc. While these calculi serve
their purposes well, their tailoring also make them fit less
well as a basis for extension when reasoning about languages
which do not build upon the same features. OOlong aims
to act as a calculus for common object-oriented languages
in order to facilitate reasoning about extensions for such
languages.

2.1 Java-based Calculi
There are many object calculi which aim to act as a core
calculus for Java. While OOlong does not aim to model
Java, it does not actively avoid being similar to Java. A Java
programmer should feel comfortable looking at OOlong code,
but a researcher using OOlong does not need to use Java as
the model. Figure 1 surveys the main differences between dif-
ferent Java core calculi and OOlong. In contrast to many of
the Java-based calculi, OOlong ignores inheritance between
classes and instead uses only interfaces. While inheritance is
an important concept in Java, we believe that subtyping is a
much more important concept for object-oriented program-
ming in general. Interfaces provide a simple way to achieve
subtyping without having to include concepts like overriding.
With interfaces in place, extending the calculus to model
other inheritance techniques like mixins [12] or traits [24]
becomes easier.

The smallest proposed candidate for a core Java calculus is
probably Featherweight Java [14], which omits all forms of
assignment and object state, focusing on a functional core of
Java. While this is enough for reasoning about Java’s type
system, the lack of mutable state precludes reasoning about
object-oriented programming in a realistic way. Extensions of
this calculus often re-add state as a first step (e.g., [2, 17, 23]).
The original formulation of Featherweight Java was not mech-
anised, but a later variation omitting casts and introducing
assignment was mechanised in Coq (∼2300 lines) [17]. When
developing mixins, Flatt et al. define ClassicJava [12], an
imperative core Java calculus with classes and interfaces. It
has been extended several times (e.g., [9, 27]). Flanagan and
Freund later added concurrency and locks to ClassicJava

in ConcurrentJava [11], but omitted interfaces. To the best
of our knowledge, neither ClassicJava nor ConcurrentJava
have been mechanised.

Bierman et al. define Middleweight Java [3], another imper-
ative core calculus which also models object identity, null
pointers, constructors and Java’s block structure and call
stack. Middleweight Java is a true subset of Java, meaning
that all valid Middleweight Java programs are also valid
Java programs. The high level of detail however makes it
unattractive for extensions which are not highly Java-specific.
To the best of our knowledge, Middleweight Java was never
mechanised. Strnǐsa proposes Lightweight Java as a simpli-
fication of Middleweight Java [26], omitting block scoping,
type casts, constructors, expressions, and modelling of the
call stack, while still being a proper subset of Java. Like Wel-
terweight Java it is purely based on statements, and does not
include interfaces. Like OOlong, Lightweight Java is defined
in Ott, but additionally uses Ott to generate a mechanised
formalism in Isabelle/HOL. A later extension of Lightweight
Java was also mechanised in Coq (∼800 lines generated from
Ott, and another ∼5800 lines of proofs) [10].

Last, some language models go beyond the surface language
and execution. One such model is Jinja by Klein and Nip-
kow [16], which models (parts of) the entire Java architecture,
including the virtual machine and compilation from Java to
byte code. To handle the complexity of such a system, Jinja
is fully mechanised in Isabelle/HOL. The focus of Jinja is
different than that of calculi like OOlong, and is therefore
not practical for exploring language extensions which do not
alter the underlying runtime.

2.2 Background
OOlong started out as a target language acting as dynamic
semantics for a type system for concurrency control [6]. The
proof schema for this system involved translating the source
language into OOlong, establishing a mapping between the
types of the two languages, and reasoning about the be-
haviour of a running OOlong program. In this context,
OOlong was extended with several features, including asser-
tions, readers–writer locks, regions, destructive reads and
mechanisms for tracking which variables belong to which
stack frames (Section 8 outlines the addition of assertions
and regions). By having a machine checked proof of sound-
ness for OOlong that we could trust, the proof of progress and
preservation of the source language followed from showing
that translation preserves well-formedness of programs.
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P ::= Ids Cds e (Programs)
Id ::= interface I {Msigs} (Interfaces)

| interface I extends I1, I2
Cd ::= class C implements I {Fds Mds} (Classes)
Msig ::= m(x : t1) : t2 (Signatures)
Fd ::= f : t (Fields)
Md ::= def Msig {e} (Methods)
e ::= v | x | x.f | x.f = e (Expressions)

| x.m(e) | let x = e1 in e2 | new C | (t) e
| finish{async{e1} async{e2}}; e3
| lock(x) in e | lockedι{e}

v ::= null | ι (Values)
t ::= C | I | Unit (Types)

Γ ::= ε | Γ, x : t | Γ, ι : C (Typing environment)

Figure 2: The syntax of OOlong.

3. STATIC SEMANTICS OF OOlong
In this section, we describe the static semantics of OOlong.
The semantics are also available as Coq sources, together
with a full soundness proof. The main differences between
the paper version and the mechanised semantics are outlined
in Section 6.

Figure 2 shows the syntax of OOlong. Ids, Cds, Fds, Mds and
Msigs are sequences of zero or more of their singular counter-
parts. Terms in grey boxes are not part of the surface syntax
but only appear during evaluation. The meta-syntactic vari-
ables are x, y and this for variable names, f for field names,
C for class names, I for interface names, and m for method
names. For simplicity we assume that all names are unique.
OOlong defines objects through classes, which implement
some interface. Interfaces are in turn defined either as a col-
lection of method signatures, or as an “inheriting” interface
which joins two other interfaces. There is no inheritance
between classes, and no overriding of methods. A program
is a collection of interfaces and classes together with a start-
ing expression e. An example of a full OOlong program
(extended to handle integers) can be found in Figure 10.

Most expressions are standard: values (null or abstract ob-
ject locations ι), variables, field accesses, field assignments,
method calls, object instantiation and type casts. For sim-
plicity, targets of field and method lookups must be vari-
ables, and method calls have exactly one argument (multi-
ple arguments can be simulated through object indirection,
and an empty argument list by passing null). We also use
let-bindings rather than sequences and variables. Sequenc-
ing can be achieved through the standard trick of trans-
lating e1; e2 into let = e1 in e2 (due to eager evaluation
of e1). Parallel threads are spawned with the expression
finish{async{e1} async{e2}}; e3, which runs e1 and e2 in
parallel, waits for their completion, and then continues with
e3.

The expression lock(x) in e locks the object pointed to by x
for the duration of e. While an expression locking the object
at location ι is executed in the dynamic semantics, it appears
as lockedι{e}. This way, locks are automatically released at
the end of the expression e. It also allows tracking which
field accesses are protected by locks and not.

` P : t ` Id ` Cd ` Fd ` Md (Well-formed program)

wf-program
∀ Id ∈ Ids. ` Id ∀Cd ∈ Cds. ` Cd ε ` e : t

` Ids Cds e : t

wf-interface
∀m(x : t) : t ′∈ Msigs. ` t∧ ` t ′

` interface I {Msigs }

wf-interface-extends
` I1 ` I2

` interface I extends I1, I2

wf-class
∀m(x : t) : t ′∈ msigs (I ).def m(x : t) : t ′ { e } ∈ Mds
∀Fd ∈ Fds. ` Fd ∀Md ∈ Mds.this : C ` Md

` class C implements I {Fds Mds }

wf-field
` t

` f : t

wf-method
this : C , x : t ` e : t ′

this : C ` def m(x : t) : t ′ { e }

Figure 3: Well-formedness of classes and interfaces.

Types are class or interface names, or Unit (used as the type
of assignments). The typing environment Γ maps variables
to types and abstract locations to classes.

3.1 Well-Formed Program
Figure 3 shows the definition of a well-formed program, which
consists of well-formed interfaces and well-formed classes,
plus a well-typed starting expression. A non-empty in-
terface is well-formed if its method signatures only men-
tion well-formed types (WF-INTERFACE), and an inherit-
ing interface is well-formed if the interfaces it extends are
well-formed (WF-INTERFACE-EXTENDS). A class is well-
formed if it implements all the methods in its interface (the
helper function msigs is defined in the appendix, cf., Sec-
tion A.3). Further, all fields and methods must be well-
formed (WF-CLASS). A field is well-formed if its type is
well-formed (WF-FIELD). A method is well-formed if its
body has the type specified as the method’s return type
under an environment containing the single parameter and
the type of the current this (WF-METHOD).

3.2 Types and Subtyping
Figure 4 shows the rules relating to typing, subtyping, and the
typing environment Γ. Each class or interface in the program
corresponds to a well-formed type (T-WF-*). Subtyping is
transitive and reflexive, and is nominally defined by the in-
terface hierarchy of the current program (T-SUB-*). A well-
formed environment Γ has variables of well-formed types and
locations of valid class types (WF-ENV). Finally, the frame
rule splits an environment Γ1 into two sub-environments Γ2

and Γ3 whose variable domains are disjoint (but which may
share locations ι). The meta-syntactic variable γ abstracts
over variables x and locations ι (to reduce clutter), and the
helper function vardom extracts the set of variables from
an environment (cf., Section A.3). The frame rule is used

APPLIED COMPUTING REVIEW  DEC. 2018,  VOL. 18,  NO. 4 49



` t (Well-formed types)

t-wf-class
class C implements I { } ∈ P

` C

t-wf-interface
interface I { } ∈ P

` I

t-wf-interface-extends
interface I extends I1, I2∈ P

` I

t-wf-unit

` Unit

t1 <: t2 (Subtyping)

t-sub-class
class C implements I { } ∈ P

C <: I

t-sub-interface-left
interface I extends I1, I2∈ P

I <: I1

t-sub-interface-right
interface I extends I1, I2∈ P

I <: I2

t-sub-trans
t1 <: t2 t2 <: t3

t1 <: t3

t-sub-eq

` t

t <: t

` Γ (Well-formed environment)

wf-env
∀ x : t ∈ Γ. ` t ∀ ι : C ∈ Γ. ` C

` Γ

Γ1 = Γ2 + Γ3 (Frame Rule)

wf-frame
∀ γ : t ∈ Γ2.Γ1(γ) = t
∀ γ : t ∈ Γ3.Γ1(γ) = t

(vardom (Γ2) ∩ vardom (Γ3)) = ∅
Γ1 = Γ2 + Γ3

Figure 4: Typing, subtyping, and the typing environment.

when spawning new threads to prevent them from sharing
variables1.

3.3 Expression Typing
Figure 5 shows the typing rules for expressions, most of
which are straightforward. Variables are looked up in the
environment (WF-VAR) and introduced using let bindings
(WF-LET). Method calls require the argument to exactly
match the parameter type of the method signature (WF-

CALL). We require explicit casts, and only support upcasts
(WF-CAST). Fields are looked up with the helper function

1Since variables are immutable in OOlong, this kind of shar-
ing would not be a problem in practice, but for extensions
requiring mutable variables, we believe having this in place
makes sense.

Γ ` e : t (Typing Expressions)

wf-var
` Γ Γ(x ) = t

Γ ` x : t

wf-let
Γ ` e1 : t1 Γ, x : t1 ` e2 : t

Γ ` let x = e1 in e2 : t

wf-call
Γ ` x : t1 Γ ` e : t2

msigs (t1)(m) = y : t2 → t

Γ ` x.m(e) : t

wf-cast
Γ ` e : t ′ t ′ <: t

Γ ` (t)e : t

wf-select
Γ ` x : C

fields (C )(f ) = t

Γ ` x .f : t

wf-update
Γ ` x : C Γ ` e : t

fields (C )(f ) = t

Γ ` x .f = e : Unit

wf-new
` Γ ` C

Γ ` new C : C

wf-loc
` Γ Γ(ι) = C C <: t

Γ ` ι : t

wf-null
` Γ ` t

Γ ` null : t

wf-fj
Γ = Γ1 + Γ2 Γ1 ` e1 : t1 Γ2 ` e2 : t2 Γ ` e : t

Γ ` finish { async { e1 } async { e2 } } ; e : t

wf-lock
Γ ` x : t2 Γ ` e : t

Γ ` lock(x ) in e : t

wf-locked
Γ ` e : t Γ(ι) = t2

Γ ` lockedι{e} : t

Figure 5: Typing of expressions

fields (WF-SELECT). Fields may only be looked up in class
types (as interfaces do not define fields). Field updates have
the Unit type (WF-UPDATE). Any class in the program
can be instantiated (WF-NEW). Locations can be given any
super type of their class type given in the environment (WF-

LOC). The constant null can be given any well-formed type,
including Unit (WF-NULL). Forking new threads requires
that the accessed variables are disjoint, which is enforced by
the frame rule Γ = Γ1 + Γ2 (WF-FJ). Locks can be taken on
any well-formed target (WF-LOCK*).

Section 9 introduces a bidirectional version of the typing
rules which are entirely syntax-directed (meaning they can
be directly implemented by a type checker) and which handle
implicit upcasts, e.g., for arguments to method calls.

4. DYNAMIC SEMANTICS OF OOlong
In this section, we describe the dynamic semantics of OOlong.
Figure 6 shows the structure of the run-time constructs of
OOlong. A configuration 〈H;V ;T 〉 contains a heap H, a
variable map V , and a collection of threads T . A heap H
maps abstract locations to objects. Objects store their class,
a map F from field names to values, and a lock status L
which is either locked or unlocked. A stack map V maps
variable names to values. As variables are never updated,
OOlong could use a simple variable substitution scheme
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cfg ::= 〈H;V ;T 〉 (Configuration)
H ::= ε | H, ι 7→ obj (Heap)
V ::= ε | V, x 7→ v (Variable map)
T ::= (L, e) | T1 ||T2 � e | EXN (Threads)
obj ::= (C,F, L) (Objects)
F ::= ε | F, f 7→ v (Field map)
L ::= locked | unlocked (Lock status)
EXN ::= NullPointerException (Exceptions)

Figure 6: Run-time constructs of OOlong.

instead of tracking the values of variables in a map. However,
the current design gives us a simple way of reasoning about
object references on the stack as well as on the heap, and
makes it easier to later add support for assignable variables.

A thread collection T can have one of three forms: T1||T2 � e
denotes two parallel asyncs T1 and T2 which must reduce
fully before evaluation proceeds to e. (L, e) is a single thread
evaluating expression e. L is a set of locations of all the
objects whose locks are currently being held by the thread.
The initial configuration is 〈ε; ε; (∅, e)〉, where e is the initial
expression of the program. A thread can also be in an
exceptional state EXN, which is a well-formed but “crashed”
state that cannot be recovered from. The current semantics
only supports the NullPointerException.

4.1 Well-Formedness Rules
Figure 7 shows the definition of a well-formed OOlong configu-
ration. A configuration is well-formed if its heap H and stack
V are well-formed, its collection of threads T is well-typed,
and the current lock situation in the system is well-formed
(WF-CFG). Note that well-formedness of threads is split into
two sets of rules regarding expression typing and locking re-
spectively A heap H is well-formed under a Γ if all locations
in Γ correspond to objects in H, all objects in the heap have
an entry in Γ, and the fields of all objects are well-formed
under Γ (WF-HEAP). The fields of an object of class C are
well-formed if each name of the static fields of C maps to a
value of the corresponding type (WF-FIELDS). A stack V is
well-formed under a Γ if each variable in Γ maps to a value
of the corresponding type in V , and each variable in V has
an entry in Γ (WF-VARS). A well-formed thread collection
requires all sub-threads and expressions to be well-formed
(WF-T-*). An exceptional state can have any well-formed
type (WF-T-EXN).

The current lock situation is well-formed for a thread if all
locations in its set of held locks L correspond to objects whose
lock status is locked. Two instances of lockedι in e must
refer to different locations ι (captured by distinctLocks(e),
cf., Section A.3), and for each lockedι in e, ι must be in
the set of held locks L. The parallel case propagates these
properties, and additionally requires that two parallel threads
do not hold the same locks in their respective L. Any locks
held in the continuation e must be held by the first thread
of the async. This represents the fact the first thread is
the one that will continue execution after the threads join
(WF-L-ASYNC). Exceptional states are always well-formed
with respect to locking (WF-L-EXN).

Γ ` 〈H;V ;T 〉 : t (Well-formed configuration)

wf-cfg
Γ ` H Γ ` V

Γ ` T : t H `lock T

Γ ` 〈H ; V ; T 〉 : t

wf-heap
∀ ι : C ∈ Γ.H (ι) = (C ,F , L) ∧ Γ; C ` F
∀ ι∈ dom (H ).ι ∈ dom(Γ) ` Γ

Γ ` H

wf-fields
fields (C ) ≡ f1 : t1, .. , fn : tn

Γ ` v1 : t1, .. ,Γ ` vn : tn

Γ; C ` f1 7→ v1, .. , fn 7→ vn

wf-vars
∀ x : t ∈ Γ.V (x ) = v ∧ Γ ` v : t
∀ x ∈ dom (V ).x ∈ dom(Γ) ` Γ

Γ ` V

wf-t-async
Γ ` T1 : t1 Γ ` T2 : t2

Γ ` e : t

Γ ` T1 ||T2 � e : t

wf-t-thread
Γ ` e : t

Γ ` (L, e) : t

wf-t-exn
` t ` Γ

Γ ` EXN : t

wf-l-thread
∀ ι∈ L.H (ι) = (C ,F , locked)

distinctLocks(e) ∀ ι∈ locks (e).ι∈ L
H `lock (L, e)

wf-l-async
heldLocks (T1) ∩ heldLocks (T2) = ∅
∀ ι∈ locks (e).ι∈ heldLocks (T1)

distinctLocks(e) H `lock T1 H `lock T2

H `lock T1 ||T2 � e

wf-l-exn

H `lock EXN

Figure 7: Well-formedness rules.

4.2 Evaluation of Expressions
Figure 8 shows the single-threaded execution of an OOlong
program. OOlong uses a small-step dynamic semantics, with
the standard technique of evaluation contexts (the definition
of E in the top of the figure) to decide the order of evaluation
and reduce the number of rules (DYN-EVAL-CONTEXT).
We use a single stack frame for the entire program and
employ renaming to make sure that variables have unique
names2. Evaluating a variable simply looks it up in the
stack (DYN-EVAL-VAR). A let-expression introduces a fresh
variable that it substitutes for the static name (DYN-EVAL-

LET). Similarly, calling a method introduces two new fresh
variables—one for this and one for the parameter of the
method. The method is dynamically dispatched on the type

2This sacrifices reasoning about properties of the stack size
in favour of simpler dynamic semantics.
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E[•] ::= x.f = • | x.m(•) | let x = • in e | (t) • | lockedι{•}

cfg1 ↪→ cfg2 (Evaluation of expressions)

dyn-eval-context
〈H ; V ; (L, e)〉 ↪→ 〈H ′; V ′; (L′, e ′)〉

〈H ; V ; (L, E[e])〉 ↪→ 〈H ′; V ′; (L′, E[e ′])〉

dyn-eval-var
V (x ) = v

〈H ; V ; (L, x )〉 ↪→ 〈H ; V ; (L, v)〉

dyn-eval-let
x ′ fresh V ′ = V [x ′ 7→ v ] e ′ = e[x 7→ x ′]

〈H ; V ; (L, let x = v in e)〉 ↪→ 〈H ; V ′; (L, e ′)〉

dyn-eval-call
V (x ) = ι H (ι) = (C ,F , L)
methods (C )(m) = y : t2 → t , e

this′ fresh y ′ fresh
V ′ = V [this′ 7→ ι][y ′ 7→ v ]
e ′ = e[this 7→ this′][y 7→ y ′]

〈H ; V ; (L, x.m(v))〉 ↪→ 〈H ; V ′; (L, e ′)〉

dyn-eval-cast

〈H ; V ; (L, (t)v)〉 ↪→ 〈H ; V ; (L, v)〉

dyn-eval-select
V (x ) = ι H (ι) = (C ,F , L)
fields (C )(f ) = t F (f ) = v

〈H ; V ; (L, x .f )〉 ↪→ 〈H ; V ; (L, v)〉

dyn-eval-update
V (x ) = ι H (ι) = (C ,F , L)

fields (C )(f ) = t ′ H ′ = H [ι 7→ (C ,F [f 7→ v ], L)]

〈H ; V ; (L, x .f = v)〉 ↪→ 〈H ′; V ; (L, null)〉

dyn-eval-new
fields (C ) ≡ f1 : t1, .. , fn : tn
F ≡ f1 7→ null, .. , fn 7→ null

ι fresh H ′ = H [ι 7→ (C ,F , unlocked)]

〈H ; V ; (L, new C )〉 ↪→ 〈H ′; V ; (L, ι)〉

dyn-eval-lock
V (x ) = ι H (ι) = (C ,F , unlocked) ι 6∈ L
H ′ = H [ι 7→ (C ,F , locked)] L′ = L ∪ {ι}

〈H ; V ; (L, lock(x ) in e)〉 ↪→ 〈H ′; V ; (L′, lockedι{e})〉

dyn-eval-lock-reentrant
V (x ) = ι H (ι) = (C ,F , locked) ι∈ L
〈H ; V ; (L, lock(x ) in e)〉 ↪→ 〈H ; V ; (L, e)〉

dyn-eval-lock-release
H (ι) = (C ,F , locked) L′ = L\{ι}

H ′ = H [ι 7→ (C ,F , unlocked)]

〈H ; V ; (L, lockedι{v})〉 ↪→ 〈H ′; V ; (L′, v)〉

Figure 8: Dynamic semantics (1/2). Expressions.

cfg1 ↪→ cfg2 (Concurrency)

dyn-eval-async-left
〈H ; V ; T1〉 ↪→ 〈H ′; V ′; T ′1〉

〈H ; V ; T1 ||T2 � e〉 ↪→ 〈H ′; V ′; T ′1 ||T2 � e〉

dyn-eval-async-right
〈H ; V ; T2〉 ↪→ 〈H ′; V ′; T ′2〉

〈H ; V ; T1 ||T2 � e〉 ↪→ 〈H ′; V ′; T1 ||T ′2 � e〉

dyn-eval-spawn
e = finish { async { e1 } async { e2 } } ; e3

〈H ; V ; (L, e)〉 ↪→ 〈H ; V ; (L, e1) ||(∅, e2) � e3〉

dyn-eval-spawn-context
〈H ; V ; (L, e)〉 ↪→ 〈H ; V ; (L, e1) ||(∅, e2) � e3〉

〈H ; V ; (L, E[e])〉 ↪→ 〈H ; V ; (L, e1) ||(∅, e2) � E[e3]〉

dyn-eval-async-join

〈H ; V ; (L, v) ||(L′, v ′) � e〉 ↪→ 〈H ; V ; (L, e)〉

Figure 9: Dynamic semantics (2/2). Concurrency.

of the target object (DYN-EVAL-CALL).

Casts will always succeed and are therefore no-ops dynam-
ically (DYN-EVAL-CAST). Adding support for downcasts
is possible with the introduction of a new exceptional state
for failed casts. Fields are looked up in the field map of
the target object (DYN-EVAL-SELECT). Similarly, field
assignments are handled by updating the field map of the
target object. Field updates, which are always typed as Unit,
evaluate to null (DYN-EVAL-UPDATE). We have omitted
constructors from this treatise (Section 8.3 discusses how
they can be added). A new object has its fields initialised
to null and is given a fresh abstract location on the heap
(DYN-EVAL-NEW).

Taking a lock requires that the lock is currently available and
adds the locked object to the lock set L of the current thread.
It also updates the object to reflect its locked status (DYN-

EVAL-LOCK). The locks in OOlong are reentrant, meaning
that grabbing the same lock twice will always succeed (DYN-

EVAL-LOCK-REENTRANT). Locking is structured, mean-
ing that a thread can not grab a lock without also releasing
it sooner or later (modulo getting stuck due to deadlocks).
The locked wrapper around e records the successful taking
of the lock and is used to release the lock once e has been
fully reduced (DYN-EVAL-LOCK-RELEASE). Note that a
thread that cannot take a lock gets stuck until the lock is
released. We define these states formally to distinguish them
from unsound stuck states (cf., Section A.1)

Dereferencing null, e.g., using a null valued argument when
looking up a field or calling a method, results in a Null-
PointerException, which crashes the program. These rules
are unsurprising and are therefore relegated to the appendix
(cf., Section A.2).

4.3 Concurrency
Figure 9 shows the semantics of concurrent execution in OO-
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long. Concurrency is modeled as non-deterministic choice of
what thread to evaluate (DYN-EVAL-ASYNC-LEFT/RIGHT).
Finish/async spawns one new thread for the second async
and uses the current thread for the first. This means that
the first async holds all the locks of the spawning thread,
while the second async starts out with an empty lock set
(DYN-EVAL-SPAWN). The evaluation context rule, needed
because DYN-EVAL-CONTEXT does not handle spawning,
forces the full reduction of the parallel expressions to the
left of � before continuing with e3, which is the expression
placed in the hole of the evaluation context (DYN-EVAL-

SPAWN-CONTEXT). When two asyncs have finished, the
second thread is removed along with all its locks3, and the
first thread continues with the expression to the right of �
(DYN-EVAL-ASYNC-JOIN).

5. TYPE SOUNDNESS OF OOlong
We prove type soundness as usual by proving progress and
preservation. This section only states the theorems and
sketches the proofs. We refer to the mechanised semantics
for the full proofs (cf., Section 6).

Since well-formed programs are allowed to deadlock, we must
formulate the progress theorem so that this is handeled. The
Blocked predicate on configurations is defined in the appendix
(cf., Section A.1).

Progress. A well-formed configuration is either done, has
thrown an exception, has deadlocked, or can take one addi-
tional step:

∀Γ, H, V, T, t . Γ ` 〈H;V ;T 〉 : t⇒
T = (L, v)∨T = EXN∨Blocked(〈H;V ;T 〉)∨
∃cfg ′, 〈H;V ;T 〉 ↪→ cfg ′

Proof sketch. Proved by induction over the thread struc-
ture T . The single threaded case is proved by induction over
the typing relation over the current expression.

To show preservation of well-formedness we first define a
subsumption relation Γ1 ⊆ Γ2 between environments. Γ2

subsumes Γ1 if all mappings γ : t in Γ1 are also in Γ2:

Γ1 ⊆ Γ2 (Environment Subsumption)

wf-subsumption
∀ γ : t ∈ Γ.Γ′(γ) = t

Γ ⊆ Γ′

Preservation. If 〈H;V ;T 〉 types to t under some environ-
ment Γ, and 〈H;V ;T 〉 steps to some 〈H ′;V ′;T ′〉, there exists
an environment subsuming Γ which types 〈H ′;V ′;T ′〉 to t.

∀Γ, H, H ′, V, V ′, T, T ′, t.
Γ ` 〈H;V ;T 〉 : t ∧ 〈H;V ;T 〉 ↪→ 〈H ′;V ′;T ′〉 ⇒
∃Γ′.Γ′ ` 〈H ′;V ′;T ′〉 : t ∧ Γ ⊆ Γ′

Proof sketch. Proved by induction over the thread struc-
ture T . The single threaded case is proved by induction over

3In practice, since locking is structured these locks will al-
ready have been released.

the typing relation over the current expression. There are
also a number of lemmas regarding locking that needs prov-
ing (e.g., that a thread can never steal a lock held by another
thread). We refer to the mechanised proofs for details.

6. MECHANISED SEMANTICS
We have fully mechanised the semantics of OOlong in Coq,
including the proofs of soundness. The source code weighs
in at ∼4100 lines of Coq, ∼900 of which are definitions and
∼3200 of which are properties and proofs. In the proof code,
∼300 lines are extra lemmas about lists and ∼200 lines are
tactics specific to this formalism used for automating often
re-occurring reasoning steps. The proofs also make use of
the LibTactics library [20], as well as the crush tactic [8].
We use Coq bullets together with Aaron Bohannon’s “Case”
tactic to structure the proofs and make refactoring simpler;
when a definition changes and a proof needs to be rewritten,
it is immediately clear which cases fail and therefore need to
be updated.

The mechanised semantics are the same as the semantics pre-
sented here, modulo uninteresting representation differences
such as modelling the typing environment Γ as a function
rather than a sequence. It explicitly deals with details such
as how to generate fresh names and separating static and
dynamic constructs (e.g., when calling a method, the body of
the method will not contain any dynamic expressions, such
as lockedι{e}). It also defines helper functions like field and
method lookup.

The Coq sources are available in a public repository so that
the semantics can be easily obtained and extended [5]. The
source files compile under Coq 8.8.2, the latest version at
the time of writing.

As a comparison between the Coq definitions and the paper
versions, here are the mechanised formulations of progress
and preservation:

Theorem progress :
forall P t’ Gamma cfg t,
wfProgram P t’ ->
wfConfiguration P Gamma cfg t ->
cfg_done cfg \/ cfg_exn cfg \/
cfg_blocked cfg \/
exists cfg’, P / cfg ==> cfg’.

Theorem preservation :
forall P t’ Gamma cfg cfg’ t,
wfProgram P t’ ->
wfConfiguration P Gamma cfg t ->
P / cfg ==> cfg’ ->
exists Gamma’,
wfConfiguration P Gamma’ cfg’ t /\
wfSubsumption Gamma Gamma’.

Other than some notational differences (e.g., using the name
cfg instead of spelling out 〈H;V ;T 〉), the biggest notice-
able difference is that the program P is threaded through
all the definitions, among other things to be able to do
field and method lookups. For example, the proposition
P / cfg ==> cfg’ should be read as“cfg steps to cfg’ when
executing in program P”. There is also an explicit requirement
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that this program is well-formed (wfProgram P t’, where t’

is the type of the starting expression).

As another example, here is the lemma that states that if
two threads have disjoint lock sets, stepping one of them will
not cause the lock sets to overlap:

Lemma stepCannotSteal :
forall P H H’ V V’ n n’ T1 T1’ T2,
wfLocking H T1 ->
wfLocking H T2 ->
disjointLocks T1 T2 ->
P / (H, V, n, T1) ==> (H’, V’, n’, T1’) ->
disjointLocks T1’ T2.

The propositions disjointLocks T1 T2 and wfLocking H T

correspond to heldLocks(T1) ∩ heldLocks(T2) = ∅ and
H `lock T (cf., Figure 7). The extra element n in the config-
uration (H, V, n, T) is an integer used to generate fresh
variable names.

Finally, we first show how the evaluation context E (cf.,
Figure 8) is expressed in Coq. An evaluation context is a
function taking a single expression to another expression:

Definition econtext := expr -> expr.

Each case of E is represented by a Coq function of type
econtext, for example:

Definition ctx_call (x : _) (m : _) : econtext :=
(fun e => ECall x m e).

To capture which functions are valid evaluation contexts, we
define a proposition is_econtext, which is used by all defi-
nitions which reason about evaluation contexts (the snippet
below shows the dynamic rule DYN-EVAL-CONTEXT):

Inductive is_econtext : econtext -> Prop :=
| EC_Call :

forall x m,
is_econtext (ctx_call x m)

| ...

Inductive step (P : program) :
configuration -> configuration -> Prop :=
| ...
| EvalContext :

forall H H’ V V’ n n’ E e e’ Ls Ls’,
is_econtext E ->
P / (H, V, n, T_Thread Ls e) ==>
(H’, V’, n’, T_Thread Ls’ e’) ->

P / (H, V, n, T_Thread Ls (E e)) ==>
(H’, V’, n’, T_Thread Ls’ (E e’))

| ...

When performing case analysis over which step rules are
applicable, Coq sometimes generates absurd cases where the
an invalid evaluation context is applied. To handle these cases
automatically, we define tactics for unfolding (applying) all
evaluation contexts in scope and finding impossible equalities
in the assumptions (context[e] is the Coq notation for
matching any term with e in it):

Ltac unfold_ctx :=
match goal with

| [H: context[ctx_call] |- _] =>
unfold ctx_call in H

| [_ : _ |- context[ctx_call]] =>
unfold ctx_call

| ...
end.

Ltac malformed_context :=
match goal with
| [Hctx : is_econtext ?ctx |- _] =>
inv Hctx; repeat(unfold_ctx);

try(congruence)
| _ =>
fail 1 "could not prove malformed context"

end.

The tactic malformed_context tries to find an instance of
is_econtext in the current assumptions, inverts it (inv H

is defined as (inversion H; subst; clear H)), unfolds all
evaluation contexts in scope and then uses congruence to
dismiss all subgoals with absurd equalities in the assumptions.
In proofs where case-analysis of the step relation is needed,
the tactic inv Hstep; try malformed_context is used to
only keep the sane cases around.

7. TYPESETTING OOlong
The paper version of OOlong is written in Ott [25], which
lets a user define the grammar and typing rules of their
semantics using ASCII-syntax. The rules are checked against
the grammar to make sure that the syntax is consistent. Ott
can then generate LATEX code for these rules, which when
typeset appear as in this paper. The Ott sources are available
in the same repo as the Coq sources [5]. As an example, here
is the Ott version of the rule WF-LET:

G |- e1 : t1

G, x : t1 |- e2 : t

----------------------------- :: let

G |- let x = e1 in e2 : t

The LATEX rendering of G as Γ and |- as ` is defined elsewhere
in the Ott file, and the rule is rendered as:

wf-let
Γ ` e1 : t1 Γ, x : t1 ` e2 : t

Γ ` let x = e1 in e2 : t

It is also possible to have Ott generate LATEX code for the
grammar, but these tend to require more whitespace than
one typically has to spare in an article. We therefore include
LATEX code for a more compact version of the grammar, as
well as the definitions of progress and preservation [5]. Ott
also supports generating Coq and Isabelle/HOL code from
the same definitions that generate LATEX code. We have not
used this feature as we think it is useful to let the paper
version of the semantics abstract away some of the details
that a mechanised version requires.
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8. EXTENSIONS TO THE SEMANTICS
This section demonstrates the extensibility of OOlong by
adding assertions, region based locking, and type-based null
reference tracking to the semantics. They are chosen as
examples of adding new expressions, adding new runtime
constructs, and extending the type system respectively. Here
we only describe the additions necessary, but these features
have also been added to the mechanised version of the se-
mantics with little added complexity to the code. They are
all available as examples on how to extend the mechanised
semantics [5].

8.1 Supporting Assertions
Assertions are a common way to enforce pre- and postcondi-
tions and to fail fast if some condition is not met. We add
support for assertions in OOlong by adding an expression
assert(x == y), which asserts that two variables are aliases
(if we added richer support for primitives we could let the ar-
gument of the assertion be an arbitrary boolean expression).
If an assertion fails, we throw an AssertionException. The
typing rule for assertions states that the two variables are of
the same type. The type of an assertion is Unit.

wf-assert
Γ(x ) = t Γ(y) = t

Γ ` assert (x == y) : Unit

In the dynamic semantics, we have two outcomes of evaluat-
ing an assertion: if successful, the program continues; if not,
the program should crash.

dyn-eval-assert
V (x ) = V (y)

〈H ; V ; (L, assert (x == y))〉 ↪→ 〈H ; V ; (L, null)〉

dyn-exn-assert
V (x ) 6= V (y)

〈H ; V ; (L, assert (x == y))〉 ↪→ 〈H ; V ; AssertionException〉

Note that the rules for exceptions already handle exception
propagation, regardless of the kind of exception (cf., Sec-
tion A.2).

In the mechanised semantics, the automated tactics are
powerful enough to automatically solve the additional cases
for almost all lemmas. The additional cases in the main
theorems are easily dispatched. This extension adds a mere
∼50 lines to the mechanisation.

8.2 Supporting Region-based Locking
Having a single lock per object prevents threads from concur-
rently updating disjoint parts of an object, even though this
is benign from a data-race perspective. Many effect-systems
divide the fields of an object into regions in order to reason
about effect disjointness on a single object (e.g., [4]). Sim-
ilarly, we can add regions to OOlong, let each field belong

to a region and let each region have a lock of its own. Syn-
tactically, we add a region annotation to field declarations
(“f : t in r”) and require that taking a lock specifies which
region is being locked (“lock(x, r) in e”). Here we omit declar-
ing regions and simply consider all region names valid. This
means that the rules for checking well-formedness of fields
do not need updating (other than the syntax).

Dynamically, locks are now identified not only by the location
ι of their owning object, but also by their region r. Objects
need to be extended from having one lock to having multiple
locks, each with its own lock status. We model this by
replacing the lock status of an object with a region map
RL from region names to lock statuses. As an example, the
dynamic rule for grabbing a lock for a region is updated
thusly:

dyn-eval-lock-region
V (x ) = ι H (ι) = (C ,F ,RL) RL( r ) = unlocked

(ι, r ) 6∈ L L′ = L ∪ {(l, r)}
H ′ = H [ι 7→ (C ,F ,RL[ r 7→ locked])]

〈H ; V ; (L, lock(x , r) in e)〉 ↪→ 〈H ′; V ; (L′, locked(ι,r){e})〉

Similarly, the well-formedness rules for locking need to be
updated to refer to region maps of objects instead of just
objects. A region map must contain a mapping for each
region used in the object:

wf-regions
∀ f : t in r∈ fields (C ).r ∈ dom(RL)

C ` RL

The changes can mostly be summarised as adding one extra
level of indirection each time a lock status is looked up on the
heap. The same is true for the mechanised semantics. For
example, in the original mechanisation, the lemma showing
that stepping a thread cannot cause it to take a lock that is
already locked by another thread looks like this:

Lemma noDuplicatedLocks :
forall P t’ Gamma l H H’ V V’ n n’ T T’ t c F,
wfProgram P t’ ->
heapLookup H l = Some (c, F, LLocked) ->
~ In l (t_locks T) ->
wfConfiguration P Gamma (H, V, n, T) t ->
P / (H, V, n, T) ==> (H’, V’, n’, T’) ->
~ In l (t_locks T’).

The function t_locks extracts the locks held by a thread T.
In the version extended with region locks, the same lemma
instead looks like this:

Lemma noDuplicatedLocks : forall
P t’ Gamma l r H H’ V V’ n n’ T T’ t c F RL,
wfProgram P t’ ->
heapLookup H l = Some (c, F, RL) ->
RL r = Some LLocked ->
~ In (l, r) (t_locks T) ->
wfConfiguration P Gamma (H, V, n, T) t ->
P / (H, V, n, T) ==> (H’, V’, n’, T’) ->
~ In (l, r) (t_locks T’).
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Notice that instead of having a single taken lock, the object
looked up on the heap has a region map RL whose lock related
to region r is taken. The proof of the lemma is the same as
before, except for one extra inversion and an additional call
to congruence.

This extension increases the size of the mechanised semantics
by ∼130 lines.

8.3 Supporting Nullable Types
Null pointers are famously referred to by Tony Hoare as his
“billion dollar mistake”, referring to the fact that accidentally
dereferencing null pointers has been the cause of many bugs
since their introduction in the 1960s [13]. One way to reduce
the risk of these errors is to have the type system track
which references may be null during runtime. This section
introduces such “nullable types” to OOlong.

We start by extending the syntax of types:

t ::= C | I | C? | I? | Unit

The types C? and I? are given to references which could be
null valued. In the mechanisation, class and interface types
are extended with a boolean flag which tracks if the type is
nullable or not:

Inductive ty : Type :=
| TClass : class_id -> bool -> ty
| TInterface : interface_id -> bool -> ty
| TUnit : ty.

The subtyping rules are extended to allow non-nullable ref-
erences to flow into nullable ones, but not the other way
around:

t-sub-n
t <: t ′

t? <: t ′?

t-sub-n-r
t <: t ′

t <: t ′?

Finally, the type checking rule for null is updated to disallow
non-nullable types (nullable(t) is defined to be true for all
types t? and for Unit):

wf-nullable
` Γ ` t
nullable (t)

Γ ` null : t

For simplicity in this presentation, since there are no construc-
tors in OOlong, we require that all field types are nullable
(since fields are initialised to null). Lifting this restriction
is straightforward, for example by providing a list of initial
field values when creating new objects: new C(e1, . . . , en).

The mechanised semantics grows by ∼100 lines with the type-
level additions shown above. The extension of the subtyping
rules requires some proofs to be extended to handle these
cases and some minor lemmas to be added (e.g., that if t1 <:
t2 and nullable(t1), then nullable(t2)). Allowing non-nullable
types on the heap by adding constructors is possible, but is
complicated by Coq’s inability to generate effective induction
principles for nested data types (cf., [8], Chapter 3.8); the

interface Counter {
add(x : int) : Unit
get(tmp : int) : int

}
class Cell implements Counter {
cnt : int
def init(n : int) : Unit {

this.cnt = n
}
def add(n : int) : Unit {

let cnt = this.cnt in
this.cnt = (cnt + n)

}
def get(tmp : int) : int {

this.cnt
}

}
let cell = new Cell in
let cell2 = (Counter) cell in // (†)
let tmp = cell.init(0) in // (‡)
finish {

async {
lock(cell) in cell.add(1)

}
async {

lock(cell2) in cell2.add(2)
}

};
cell.get(0)

Figure 10: An OOlong program, with added integer support.

new expression would contain a list of expressions, for which
no induction hypotheses are automatically generated during
proofs by induction. Mechanising this extension with hand-
written induction principles is left as future work.

9. PROTOTYPE INTERPRETER
In addition the formalised semantics of OOlong, we have
implemented a simple interpreter for the language. The pur-
pose of this implementation is twofold: to provide an actual
executable semantics, and to minimise the effort of proto-
typing a future extension of OOlong. It is provided together
with the Ott and Coq sources in the OOlong repository [5].

The full implementation is ∼760 lines of OCaml, accompanied
by ∼190 lines of comments and documentation. Lexing
and parsing (∼90 lines) is implemented using ocamllex [15]
and Menhir [22]. Type checking (∼190 lines) is based on a
bidirectional version of the typing rules which makes typing
entirely syntax-directed [21].

Figure 11 shows the bidirectional typing rules. Bidirectional
type checking differentiates between inferring a type for an
expression (Γ ` e⇒ t) and checking that an expression has
a given expression (Γ ` e ⇐ t). Most rules mirror the cor-
responding rules in Figure 5, but make explicit which types
are inferred and which are checked against an existing type.
The frame-rule in WF-FJ is exchanged for a requirement
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Γ ` e⇒ t Γ ` e⇐ t (Inference/Checking)

bd-infer-var
` Γ Γ(x ) = t

Γ ` x ⇒ t

bd-infer-let
Γ ` e1 ⇒ t1 Γ, x : t1 ` e2 ⇒ t

Γ ` let x = e1 in e2 ⇒ t

bd-infer-call
Γ ` x ⇒ t1 Γ ` e ⇐ t2
msigs (t1)(m) = y : t2 → t

Γ ` x.m(e)⇒ t

bd-infer-cast
Γ ` e ⇐ t

Γ ` (t)e ⇒ t

bd-infer-select
Γ ` x ⇒ C

fields (C )(f ) = t

Γ ` x .f ⇒ t

bd-infer-update
Γ ` x ⇒ C Γ ` e ⇐ t

fields (C )(f ) = t

Γ ` x .f = e ⇒ Unit

bd-infer-new
` Γ ` C

Γ ` new C ⇒ C

bd-infer-lock
Γ ` x ⇒ t2 Γ ` e ⇒ t

Γ ` lock(x ) in e ⇒ t

bd-infer-fj
fv(e1) ∩ fv(e2) = ∅

Γ ` e1 ⇒ t1 Γ ` e2 ⇒ t2 Γ ` e ⇒ t

Γ ` finish { async { e1 } async { e2 } } ; e ⇒ t

bd-check-null
` Γ ` t

Γ ` null⇐ t

bd-check-sub
Γ ` e ⇒ t ′

t ′ <: t e 6= null

Γ ` e ⇐ t

Figure 11: Bidirectional typing rules.

that the free variables in two parallel asyncs are disjoint
(BD-INFER-FJ). Notably, the type of null is never inferred,
but can be given any well-formed type (BD-CHECK-NULL).
Checking any other expression against some type t amounts
to inferring a type t′ and seeing if t′ is a subtype of t (BD-

CHECK-SUB). We omit rules for syntax-directed subtyping,
which is implemented as a simple traversal of the interface hi-
erarchy. Since we only ever type check static programs, there
are no rules for the dynamic expressions ι and lockedι{e}.

The actual evaluation of programs (∼290 lines) is a more
or less direct translation of the dynamic rules in Section 4.
The interpreter evaluates entire configurations one step a
time, until the program terminates or deadlocks. Non-
terminating programs (including programs with livelocks)
are not detected by the interpreter, but will run forever.
Non-deterministic choice is implemented using a “scheduler”
function which decides whether to run the left or the right
thread in a fork. This function is customisable, allowing for
deterministic scheduling as well. There is no parallelism in
the interpreter itself.

To allow for slightly more interesting programs to be writ-
ten, we have also extended the interpreter with support for
integers and addition. This extension adds ∼50 lines of code.
Other than the obvious additions to parsing, type checking
and evaluation, the typing rule BD-CHECK-NULL must also
be updated with the premise t 6= int so that null does not
inhabit the integer type. Figure 10 shows an example pro-
gram written with this extension. Ignoring the integers, it

is also a syntactically correct OOlong program according to
the formal semantics. It shows some of the ways that the
implementation (and formalism) is kept simple. For example,
a function must take exactly one argument, even when it is
not used (cf., method get). Similarly, there is no sequencing
without variable binding, so the Unit result of cell.init(0)
(‡) must be bound to a variable. Note also that the Cell ob-
ject must be aliased (†) in order to be used by both threads in
the subsequent fork (the upcast to Counter is not necessary,
but is included to show all features of the language). All
of these things are of course easily remedied, but the point
of the interpreter is not to provide a smooth programmer
experience, but to keep the implementation simple.

Interpreting the program in Figure 10 gives the following
output:

Ran for 31 steps, resulting in

([], 3)

Heap:

{

0 -> (Cell, {cnt -> 3}, Unlocked)

}

Variables:

{

cell -> 0

cell2 -> 0

cnt -> 0

cnt#4 -> 1

n -> 0

n#0 -> 1

n#2 -> 2

this -> 0

this#1 -> 0

this#3 -> 0

this#6 -> 0

tmp -> null

tmp#5 -> 0

}

The result ([], 3) represents a single thread with an empty
set of held locks and the expression 3 (cf., T in Figure 6).
The heap maps integers (“addresses”) to objects, in this case
a single unlocked Cell object, with a field cnt of value 3.
The “stack” is represented as a map from variables to values
(“addresses”, integers, or null). Since variable names are never
recycled, fresh variable names are sometimes generated to
avoid clashes (e.g., this#3). These names may differ between
different runs due to non-determinism in the scheduling of
threads. For debugging purposes, the interpreter supports
printing a representation of the state as above after every
evaluation step.

The reason for implementing the interpreter in OCaml rather
than in Coq, where correspondence to the formal semantics
could be proven directly, is partly to be able to make the
implementation simpler and partly to lower the threshold for
a potential user. An OOlong program is not guaranteed to
terminate, and since Coq requires all functions to be total,
writing an interpreter would require tricks to work around
this (e.g., limiting evaluation to a maximum number of steps).
We also believe that it is easier for someone without prior
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experience to approach OCaml than it is to approach Coq.
We leave implementing a formally verified interpreter in Coq
for future work.

10. CONCLUSION
We have presented OOlong, an object calculus with concur-
rency and locks, with a focus on extensibility. OOlong aims
to model the most important details of concurrent object-
oriented programming, but also lends itself to extension and
modification to cover other topics. A good language calculus
should be both reliable and reusable. By providing a mech-
anised formalisation of the semantics, we reduce the leap
of faith needed to trust the calculus, and also give a solid
starting point for anyone wanting to extend the calculus in a
rigorous way. Using Ott makes it easy to extend the calculus
on paper and get usable LATEX figures without having to
spend time on manual typesetting. The prototype implemen-
tation offers an entry point for the more engineering-oriented
researcher looking to experiment with new language features.

We have found OOlong to be a useful and extensible calculus,
and by making our work available to others we hope that
we will help save time for researchers looking to explore
concurrent object-oriented languages in the future.
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APPENDIX

A. OMITTED RULES
This appendix lists the rules for deadlocked states, exception
propagation, and the helper functions used in the main
article. They should all be unsurprising but are included for
completeness.

A.1 Blocking
The blocking property of a configuration holds if all its
threads are either blocking on a lock or are done (i.e., have
reduced to a value). This property is necessary to distinguish
deadlocks from stuck states.

Blocked(cfg) (Configuration is blocked)

blocked-locked
V (x) = ι H (ι) = (C ,F , locked)

ι 6∈ L
Blocked(〈H ; V ; (L, lock(x) in e)〉)

blocked-deadlock
Blocked(〈H ; V ; T1〉)
Blocked(〈H ; V ; T2〉)

Blocked(〈H ; V ; T1 ||T2 � e〉)

blocked-left
Blocked(〈H ; V ; T1〉)

Blocked(〈H ; V ; T1 ||(L, v) � e〉)

blocked-right
Blocked(〈H ; V ; T2〉)

Blocked(〈H ; V ; (L, v) ||T2 � e〉)

blocked-context
Blocked(〈H ; V ; (L, e)〉)

Blocked(〈H ; V ; (L, E[e])〉)

A.2 Exceptions
Exceptions terminate the entire program and cannot be
caught. The only rule that warrants clarification is the rule
for exceptions in evaluation contexts which abstracts the
nature of an underlying exception to avoid rule duplication
(DYN-EXCEPTION-CONTEXT). For readability we abbre-
viate NullPointerException as NPE. When we don’t care
about the kind of exception we write EXN.

cfg1 ↪→ cfg2 (Exceptions)

dyn-npe-select
V (x) = null

〈H ;V ; (L, x .f )〉 ↪→ 〈H ;V ; NPE〉

dyn-npe-update
V (x) = null

〈H ;V ; (L, x .f = v)〉 ↪→ 〈H ;V ; NPE〉

dyn-npe-call
V (x) = null

〈H ;V ; (L, x.m(v))〉 ↪→ 〈H ;V ; NPE〉

dyn-npe-lock
V (x) = null

〈H ;V ; (L, lock(x) in e)〉 ↪→ 〈H ;V ; NPE〉

dyn-exception-async-left

〈H ;V ; EXN ||T2 � e〉 ↪→ 〈H ;V ; EXN〉

dyn-exception-async-right

〈H ;V ;T1 || EXN � e〉 ↪→ 〈H ;V ; EXN〉

dyn-exception-context
〈H ; V ; (L, e)〉 ↪→ 〈H ′; V ′; EXN〉
〈H ; V ; (L, E[e])〉 ↪→ 〈H ′; V ′; EXN〉

A.3 Helper Functions
This section presents the helper functions used in the formal-
ism. Helpers methods and fields are analogous to msigs, and
we refer to the mechanised semantics for details [5].

vardom(Γ) = {x | x ∈ dom(Γ)}

msigs(I) =

{
Msigs if interface I{Msigs} ∈ P
msigs(I1) ∪msigs(I2) if interface I extends I1, I2 ∈ P

msigs(C) = {Msig | def Msig{e} ∈Mds} if class C...{ Mds} ∈ P

msigs(t)(m) = x : t1 → t2 if m(x : t1) : t2 ∈ msigs(t)

heldLocks(T ) =

{
L if T = (L, e)
heldLocks(T1) ∪ heldLocks(T2) if T = T1 ||T2 � e

locks(e) = {ι | lockedι{e′} ∈ e}

distinctLocks(e) ≡ |locks(e)| = |lockList(e)|
where lockList(e) = [ι | lockedι{e′} ∈ e]
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