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SAC 2016 Progress Highlights 

The 31st Annual ACM Symposium on Applied Computing (SAC) will be held in Pisa, Italy, Monday April 4 to 
Friday April 8, 2016, in the Palazzo dei Congress Center in Pisa. The Tutorials Program is planned for Monday; 
the Technical Program for Tuesday through Friday; the Student Research Competition (SRC) Program for 
Tuesday (display session) and Wednesday (presentations session), respectively; and the Posters Program for 
Thursday. 

SAC 2016 has received 1047 submissions, from 58 countries. The review process resulted in accepting 251 
papers, leading to acceptance rate of 23.97% across all 37 tracks.  In addition, approximately 90 posters will be 
invited for participation in the Posters Program. These are papers that have gone through the review process as 
papers. The SRC Program received 47 submissions. After the review process by the respected track committees, 
22 SRC abstracts have been invited to compete during the SRC Program. The accepted abstracts will compete for 
three cash prizes ($500, $300, and $200) and winners will be recognized during the banquet event on Thursday 
April 7, 2016. The first place winner can proceed to the National ACM SRC program. Furthermore, 12 tutorial 
proposals were received and reviewed by the organizing committee and 7 tutorials have been invited to participate 
in the Tutorials Programs. Details are posted on the conference website. 

As planning is underway, information about hotels, transportation, excursions, and reservation forms are posted 
on the conference website (http://www.acm.org/conferences/sac/sac2016/). The local organizing committee 
recommends attendees to book their transportation and hotel rooms as early as possible. The registration system is 
now open. Included in the registration fee, SAC will provide daily lunches, coffee breaks, a reception on Tuesday 
in the cloister of Santa Maria del Carmine, and a banquet dinner on Thursday at the historic train station Stazione 
Leopolda. The Steering and Organizing committees are pleased to have SAC 2016 in the historic city of Pisa. We 
invite you to join us this April, meet other attendees, enjoy the conference programs, and have a pleasant stay in 
Pisa and Italy. We hope to see you there. 
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Papers  # Track Submissions Accepted 

Papers 
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2 CC 53 13  21 OS 40 10 
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17 MUSEPAT 20 5  36 WCN 26 6 
18 NC&DLCC 9 2  37 WT 30 7 
19 NET 19 4      
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ABSTRACT
Exchange data among devices in machine-to-machine (M2M)
and Internet-of-Things (IoT) systems is an essential feature
for these systems. For the sake of simplicity and reliability,
many M2M and IoT solutions support homogeneous/single
network deployment. However, when the complexity of the
system and the number of device vendors continue to grow,
it is challenging, if not impossible, to build M2M and IoT
systems with devices using single communication protocol.
The targeted problem of this paper is to enable the commu-
nication among devices in heterogeneous networks. Multiple
Protocol Transport Network (MPTN) gateway is designed
to be a distributed messaging gateway to enable messaging
among multiple networks. To leverage the routing capability
in existing network protocols, MPTN gateway converts an
end-to-end message request to a multiple segment message
based on network topology. The protocol schedules periodic
routing table update to pro-actively keep the routing table
up to dates with long time intervals, and allows on-demand
route update to shorten the delay on topology and connec-
tivity change. The performance evaluation results show that
the protocol completes table update within tens of millisec-
onds when there are more than ten devices in a system.

CCS Concepts
•Computer systems organization → Embedded sys-
tems; Redundancy; Robotics; •Networks → Network reli-
ability;

Keywords
ACM proceedings

1. INTRODUCTION
The development on embedded systems introduce highly au-
tomatic and/or intelligent computation services into prac-
tice. It allows autonomous computation systems to com-
municate with each other and to collaborately accomplish 
the works requiring large amount of information and intel-
ligence. Many existing M2M systems are designed to work

Copyright is held by the authors. This work is based on an 
earlier work: RACS’15 Proceedings of the 2015 ACM Research in 
Adaptive and Convergent Systems, Copyright 2015 ACM 
978-1-4503-3738-0. http://dx.doi.org/10.1145/2811411.2811532

in centralized manner and homogeneous networks. Smart
Things1 is one example. Smart Things hub serves the com-
munication gateway of all Smart Things devices and all the
sampled data are sent to Smart Things servers to process.
Using a single communication protocol has its own merits.
For instance, ZigBee can support low bit-rate communica-
tion with very low energy consumption; optical communica-
tion can support gigabit transmission within a short range.
However, it is a challenge to federate the subsystems using
different communication protocols so as to seamlessly col-
laborate.

When more and more sensing and control devices are de-
signed to meet different requirements and support different
use scenario, it is inevitable for the devices in M2M and
IoT systems to communicate with other devices via hetero-
geneous communication systems. Although several M2M
and IoT solutions support heterogeneous networks, static
and centralized approach is used. Consequently, the sys-
tem suffers from single point failure, flexibility, and scala-
bility. This paper presents the design and implementation
of a distributed and dynamic meta-routing mechanism on
multiple network transport gateway. The proposed mech-
anism leverages the transport layer and beyond of existing
network protocols, and compose the routes of heterogeneous
networks protocols in distributed manner.

To support heterogeneous network communication, a com-
munication gateway that deal with the message forwarding
on top of transport layer of OSI model is designed and is
called Multiple Protocol Transport Network gateway. The
gateway receives the messages from applications, selects a
network interface to send the message, and passes the mes-
sage to transport layer. The meta-routing mechanism selects
an proper network interface to next hop in heterogeneous
networks and considers the selected next hop as destination.
Device insertion, deletion, and failure handling mechanisms
are all implemented in the gateway.

This paper is organized as follows. Section 2 presents the
background of routing protocols in ad hoc networks and the
related researches on multiple network protocols. Section 3
presents the architecture of the WuKong middle-ware and
the problem of interest. Section 4 presents the design of
multiple-protocol network gateway and distributed meta-
routing mechanism. Section 5 presents the results of per-

1http://www.smartthings.com
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formance evaluation. Section 6 concludes the paper.

2. BACKGROUND AND RELATED WORKS
This section presents the works on routing protocols for
ad hoc networks and multiple protocols supports. Rout-
ing protocols for ad hoc networks can be classified into two
categories: pro-active protocols and reactive protocols. Pro-
active protocols maintain complete routing table for all the
nodes all the time. Hence, pro-active protocols repeatedly
update the routing table. Destination-Sequenced Distance-
Vector (DSDV) is one example of pro-active protocols. Re-
active protocols update the routes when source node needs
to send data, and each node keeps routing table for a pre-
defined time interval. Ad hoc On-demand Distance Vector
(AODV) is one example of reactive protocols. The following
presents the DSDV and AODV protocols for ad hoc net-
works.

DSDV protocol was developed by C. Perkins and P. Bhag-
wat in 1994 [7]. It solved the routing loop problem in ad
hoc network. A sequence number is generated by the source
node when the network topology changes. The source node
sends the update message with this sequence number. The
sequence number is an even number when the link is present;
otherwise the sequence number is an odd number when the
link is absent. DSDV protocol keeps the routing information
on every node. The nodes exchange and update their rout-
ing information periodically. This feature generates routing
traffic even the node has no data to send, and may shorten
the battery life of sensor nodes. Because DSDV maintains
complete network routing information on all the nodes, it is
suitable for a network which has small number of nodes.

Figure 1 shows an example ad hoc network for DSDV pro-
tocol. In DSDV protocol, every node stores its complete
routing table. The routing tables for the node NA and Nb

in the example are shown in Table 1. Each entry in the table
keeps the cost (metric) and next hop on the route to reach
one destination. For example, if node Na wants to send a
message to node Ne, the packet should be routed to node
Nc,Nd, and Ne in order. The message will take three hops
to reach its destination node Ne and the next hop on the
routing path is node Nc.

Na

Nc

Nb

Nd Ne

Figure 1: An example ad hoc network

AODV protocol was developed by C. Perkins and E. Belding-
Royer in 1999 [6]. Similarly, AODV keeps track of the rout-
ing information to every destination in routing table, and
sequence numbers to avoid routing loop and to verify if the
information in routing table are up-to-date. If a route has
not been used to transmit packets, the route will be only
valid for a predefined time interval. When the interval ex-

Table 1: Routing Tables in DSDV protocol

Routing table on node Na

Dest. cost next
Na 0 Na

Nb 1 Nb

Nc 1 Nc

Nd 2 Nc

Ne 3 Nc

Routing table on node Nb

Dest. cost next
Na 1 Na

Nb 0 Nb

Nc 2 Na

Nd 1 Nd

Ne 2 Nd

Routing table on node Nc

Destination cost next
Na 1 Na

Nb 2 Na

Nc 0 Nc

Nd 1 Nd

Ne 2 Nd

pires, an expiration event will be sent to its neighbors to
invalidate the route entry. AODV creates a route before
sending packet. AODV creates one route by query and reply
message between source and destination nodes. All the in-
termediate nodes store the route information in their routing
tables in corresponding entry. Hence, it has no communica-
tion overhead on maintaining routing table when one node
has no data to send, and therefore it is suitable for highly
dynamic networks.

There are three types of control messages to establish a
route: Route Request Message (RREQ), Route Reply Mes-
sage (RREP), and Route Error Message (RERR). RREQ is
a route request packet which is broadcast to the network
when a route is not available. RREP is a route reply packet
which is sent by the nodes on selected path and to the source
node. RERR is a route error packet which is broadcasted to
neighborhood when any node detects a route is invalid.

Figure 2 demonstrates how to establish AODV routes. There
are five nodes in the figure, including source node Ns, des-
tination node Nd, three intermediate nodes Na, Nb, and
Nc. Source node Ns requests to send a packet to destina-
tion node Nd. In Step 1 : Ns broadcasts RREQ message

to its neighbor Na and Nb. In Step 2 , Na and Nb broad-
cast message RREQ again to their neighbor Nd and Nc. In
Step 3 , Nc broadcasts message RREQ again and destina-

tion node Nd replies RREP to Nc. In Step 4 , node Na

replies RREP to Ns. Finally, node Ns establishes the route
NS → Na → Nc → Nd.

Yoon, Wonyong and Vaidya [12] proposed a routing mech-
anism in multiple interfaces. There are two types of inter-
faces: a primary 802.11a interface and a secondary 802.11b
interface. 802.11a interface has a high throughput but a
shorter transmission range. 802.11b has a lower throughput
but a longer transmission range. Under normal conditions, a
TCP flow uses a primary path over the 802.11a interface dis-
covered by a reactive routing protocol. In presence of route
breakage due to node mobility, it restores its backup path
over the 802.11b interface which is already maintained by a
pro-active routing protocol and is being used for delivery of
control or management packets.
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Na

Nb

Nc

Nd

Ns

Na

Nb

Nc

Nd

Ns

Na

Nb

Nc

Nd

Ns

Na

Nb

Nc

Nd

Ns

Route Path

RREQ

RREP

3

1

4

2

Figure 2: Route Establishment for AODV

3. SYSTEM ARCHITECTURE AND PROB-
LEM DEFINITION

The grand vision for WuKong middle-ware is that future IoT
should have ”zero-cost” deployment where users of an IoT
application do not need to be concerned on how and where
to deploy sensors. The built-in intelligence from the pro-
posed IoT support can automatically perform the optimal
sensor node configuration, bandwidth allocation, fault man-
agement, and re-configuration in response to new missions
and new device deployment. Much like the past transition
from low-level assembly codes to high-level programming us-
ing general purpose OS and compiler support, IoT program-
ming may be as platform-independent as possible while keep
only the most essential system primitives to allow automatic
performance optimization.

WuKong middle-ware consists of two major components to
fill the gap for developing and managing M2M and IoT ap-
plications: intelligent middle-ware and flow-based develop-
ing framework. WuKong middle-ware is regarded as a Vir-
tual Middle-ware (VMW). The reasons for this are two-folds.
First, as sensor networks become widely available, it is very
likely that applications have to use sensors developed by dif-
ferent manufactures and communicating with different net-
work protocols. Having a virtual sensor will allow applica-
tions to run on heterogeneous networks of sensors. Second,
when the system decides to reconfigure the network, the pro-
cess of reprogramming nodes will be less expensive by using
a virtual machine design so that line of codes will be less
since the virtual sensor can offer higher level primitives spe-
cific for IoT applications. On top of WuKong middle-ware,
WuKong framework can postpone binding logical compo-
nents with physical devices until an application is deployed,
rather than when an application is developed. With the in-
telligent middle-ware and FBP, WuKong framework enables
intelligent binding for IoT systems.

WuKong middle-ware is developed as open source project
and is available for the public at https://github.com/

wukong-m2m/wukong-darjeeling. At time of this writing,
the ports for Intel Galileo, Intel Edison, and Arduino-
compatible devices are available.

3.1 System Architecture of WuKong Middle-
ware

WuKong system is a distributed computing runtime to ac-

Users

Applications

MasterGatewayGatewayGateway

GatewayGatewayWuNode

Broadband IP Network

Wireless Network with 
limited bandwidth

WuKong Middleware

Figure 3: System Architecture of WuKong

complish the requests from users and applications. Figure 4

WuKong 
Master

WuKong 
Device

WuKong 
Device

3rd Party 
Device

Progression 
Server

WuKong Gateway 
(MPTN)

WuKong Gateway 
(MPTN)

Deploy Environment

Cloud

WuKong 
Device

Data 
Gateway

WuKong 
Device

Learning 
Engine

IoT App 
Store

Figure 4: System Architecture of WuKong

shows the system architecture of WuKong middle-ware.
WuKong systems consist of the components on the cloud
and that in deployment environment. On the cloud server,
WuKong deploys IoT application store, learning engines to
learn users’ behaviors/contexts, and data gateway to archive
historical data. In deployment environment, WuKong de-
ploys one WuKong master (called WuMaster for short), sev-
eral WuKong gateways, and number of WuKong devices.
The devices in deployment environment are described be-
low.

• WuMaster: The most important task of WuMaster
is to configure, optimize, and reconfigure sensors. To
do this, it communicates with sensors through a layer
of abstraction, hiding hardware and network details
of the underlying sensor platform. During the discov-
ery and identification phase, WuMaster uses the pro-
file framework to discover the capabilities of connected
sensors, and configure sensors’ parameters. WuMaster
is also responsible for managing the user-defined ser-
vices in the system including deploying the service to
the devices, making in-situ decision for software up-
grade and service remapping. In practice, WuMaster
will be deployed on a computational power and robust
device which is capable of reliably receiving user re-
quests and managing the services.

• WuGateway: WuGateway has two major responsi-
bilities: communication gateway and backup master.

APPLIED COMPUTING REVIEW  DEC. 2015,  VOL. 15,  NO. 4 9



As a communication gateway, it has the capability
of discovering devices, forwarding messages, and dis-
patching messages in heterogeneous networks. Com-
munication gateway is named Multiple Protocol Trans-
port Network (MPTN) gateway and will be discussed
in this paper. In many deployment scenario, there can
be several MPTN gateways, each of which uses differ-
ent communication protocols to connect to the devices.
As a backup master, it has the capability of replicating
the state information and services on WuKong Master.
When the WuKong Master is down or disconnected,
the gateway can replace WuKong Master to manage
the devices and services in the system.

• WuDevices: WuKong devices, shorted as WuDe-
vices, represent the networked physical devices in the
system. One WuDevice can be a combination of sen-
sors, actuators, and computation services. To be part
of the WuKong systems, a WuDevice should register
itself to WuKong master directly or via WuGateway,
identify its own capability via its profiles, and join
the system. The services including sensing, control,
and computation carried out on WuDevices are de-
ployed by WuKong master. WuKong master deploys
the service in the form of interpretive commands, na-
tive code or Java byte code, depending on the capa-
bility of the WuDevices. Figure 5 shows the software
stack on WuDevices. NanoKang runtime is the virtual
environment to carry application workload. It consists
of boot-loader, communication subsystems, Java vir-
tual machine and native profiles. Among these compo-
nents, native profiles keep the capabilities of hardware
devices. Native profiles and virtual profiles are parts
of WuKong profile framework (WKPF), which are
will presented later. WuClass represents pre-defined
computation service in WuKong middle-ware. User-
defined computation services are define by WuObject
applications on top of WKPF.

NanoKong Runtime

Applications

Bootloader Communication 
Sub-System

Java Virtual 
Machine NP1 NP2

Native Profiles

WuClass1

WuClass

WuObject 
Applications

WuObject 
Applications

Device

WuKong Profile Framework (WKPF)

VP1 VP2

Virtual Profiles

WuClass2

Figure 5: Software Stack on WuKong Devices

3.2 Tri-Framework Architecture
The life-cycle of IoT and M2M system is a loop and has no
ends. It starts with the process of device discovery, contin-
ues with device identification, user need definition, service

composition, service deployment, and service/device update.
After a service/device is updated, the process of device dis-
covery repeats. The middle-ware for IOT and M2M take
into account and support the life-cycle of such application
scenario. In WuKong middle-ware, we develop a three or-
thogonal middle-ware frameworks to support this life-cycle:

1. Profile framework: to enable the handling of het-
erogeneous or new sensor nodes, and for high-level,
logical abstraction of low-level, native sensor opera-
tions. WuKong profile framework (WKPF) is the core
framework in WuKong to keep track of the properties
of the devices, the value of properties, and links among
computation components. Hence, on every device in
WuKong systems, one WKPF must be deployed.

2. Policy framework: to allow user-friendly specifica-
tion of application execution objective, and context-
dependent optimization of IoT/M2M performance.
Policies are applied when mapping logical components
to physical devices.

3. Progression framework: to facilitate in-situ soft-
ware upgrade for dynamically, progressive reconfigura-
tion. WuKong progression framework is the core com-
ponent for fault tolerance and program by examples to
adapt to the change of the environment, device failure,
and users’ needs.

Our earlier works [9, 5, 10, 8, 11] show that WuKong middle-
ware effectively enables run-time and remote reconfigura-
tion, run-time service binding, dynamically service mapping,
autonomous fault tolerance, and autonomous device man-
agement.

3.3 Targeted Problem: Heterogeneous Com-
munication Gateway

In last few years, many IoT and M2M devices are equipped
with different network interfaces, including Wi-Fi [2], Zig-
Bee [4], BLE, Z-wave [3], Power-line Communication, and
LoRa [1], for specific application domain and deployment
environment. In addition, there are many attempts unify
network interface for M2M and IoT systems. WuKong does
not attempt to unify the network interface and recognize
that the network interfaces in M2M and IoT will be hetero-
geneous to meet the communication requirement of various
applications. Hence, the targeted problem of this work is to
enable message transmission between devices using differ-
ent network protocols without a centralized communication
hub.

Many IoT/M2M systems use a centralized communication
hub to resolve the targeted problem. One example is Smart
Things hub, which support ZigBee, Z-Wave, and IP proto-
cols2. Centralized communication hub approach has its own
merits: less expensive to deploy services and less expensive
to maintain services. On the other hand, the communica-
tion hub may become the performance and communication
bottleneck when the number of devices in a system increases.
Consequently, its scalability is limited.

2https://shop.smartthings.com/#!/products/
smartthings-hub
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Figure 6 presents the software architecture of targeted prob-
lem.

With middlle-ware

Without middlle-ware

Figure 6: Middle-ware between physical devices and
application

WuKong VM will be deployed to every WuDevice in the
system. The middle-ware is located between application and
physical devices. Multi-wireless interface routing system will
select a communication interface to next hop, then the sys-
tem takes the selected next hop as destination and send
to network layer of selected communication interface. The
physical device knows the packet destination but doesn’t
know the route destination. Transport layer routing is not
conducted in the middle-ware and is left to individual com-
munication interface.

OSI model (Wi-Fi) Zigbee model

Multi-wireless interface routing level

Figure 7: Multi-wireless interface routing level

In M2M network, nodes may have one or more wireless com-
munication interfaces (Wi-Fi, Zigbee, Z-wave) at the same
time. One node can send data to each other indirectly, and
never reject the forwarding request from other node. Node
forwards the packet to next hop according to the routing
path. The policy is specified by users or applications accord-
ing users’ need or context at run-time. It can be a through-
put oriented policy to better utilize the throughput in the
network, or an energy saving policy to reduce energy con-
sumption in the system. Quality of Service (QoS) constraint
can be maximal energy consumption or minimal transmis-
sion delay time during transmission. The network topology
may change any time, for example: new node may come; old
node may fail or change location.

According to the user policy, and network topology. The tar-
geted problem is to design and implement a communication
component to select proper communication interface to meet
the performance requirement defined above. Furthermore,
the interface selection has to be conducted dynamically ac-
cording to run-time network topology.

At time of writing, most of network routing protocols as-
sume network interfaces are homogeneous. We design net-
work routing mechanism across different network interfaces.
The traditional network routing is designed for static envi-
ronment, which is applicable for IoT. The new node having
different network interface may join network at any time
and any existing node may fail or change its location. Con-
sequtnly, the network topology changes all the time, how
to calculate a routing path and maintain routing path un-
der dynamic network environment is the challenges of this
work.

4. DESIGN AND IMPLEMENTATION
OF DISTRIBUTED META-ROUTING
MECHANISM

4.1 MPTN Gateway
MPTN gateway provides a message forwarding service for
heterogeneous network messages in WuKong systems. A
heterogeneous network message is a message whose source
and destination network interface do not connect to same
computer network. To broaden the applicability, MPTN
gateway is designed as a software component to be deployed
on WuKong devices which have multiple network interfaces,
either homogeneous or heterogeneous. Further more, to take
advantage of existing network stacks, MPTN gateway con-
ducts meta-routing on top of transport layer, which selects
an outgoing network interface for messages received from a
different network interface and forwards the messages, for
heterogeneous network messages.

Figure 8 presents the software architecture for MPTN gate-
way. MPTN gateway leverage transport, network, MAC,
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Figure 8: Software Architecture of MPTN Gateway

and physical layer of existing network protocols. On top
of transport layer, MPTN gateway implements three major
components: Device management, Meta-Routing and QoS
Control. Device management component manages the iden-
tification of WuDevices and network interfaces. Each WuDe-
vice is assigned a unique ID among the devices managed by
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one WuMaster. Meta-Routing component searches for the
appropriate network interface to forward incoming messages.
Last, QoS control component defines, stores, and applies the
QoS policy to meta-routing. This paper aims on the design
and implementation device management and meta-routing
components.

In WuKong system, there are two types of messages. One
is the application message and the other is the routing mes-
sage. Application message is issued by applications to trans-
mit data. It can be sampled data from the sensor, the com-
mands to the actuator, or the reconfiguration message to the
WuDevice. The routing message is issued by meta-routing
component. Routing messages are the ones to update and
maintain the routing table in the system. Figure 9 shows the
flow of handling for IP messages in WuKong system. WK-
comm polling is a component called by NanoKong, WuKong
runtime, periodically to check if there is any message on
network interface to be forwarded. If there is none, it re-
turns to VM. If there is a routing message, the message will
be forwarded to device handler to follow up. If there is an
application message, the message will be forwarded to de-
vice handler to retrieve message from device buffer. Then,
WuKong communication handler forwards the message to
WuKong applications.

WKComm 
Polling

WKComm 
Handling Wi-Fi polling WiFi Mac TCP/UDP

Periodic 
Polling

Application 
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Device
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Figure 9: Flow of receiving message in WuKong

To manage the devices administrated by a WuMaster, each
WuDevice will be assigned an identification unique among
all WuDevices and each network interface will be assigned an
identification unique among the network interface in same
work. The unique device identification is called global ID,
GID for short, and the unique network interface identifica-
tion is call local ID, LID for short. A four bytes variable is
allocated for each GID and a two bytes variable is allocated
to each LID. Both GID and LID are assigned by WuMaster
during device discovery.

Communication subsystem in both WuDevice and MPTN
gateway route messages to its destination according to the
routing table on the device. Every WuDevice in network
maintains its own routing table, which keeps track of the
routes to various destination devices. Each entry in routing
table contains Destination GID, Next hop GID, next hop
LID, next hop interface, session ID, and route score. Des-
tination GID represents the GID of destination WuDevice.
Next hop GID represents the GID of the next hop to the
destination node. Next hop LID is the identification of net-
work interface used to send message to next hop. Session

ID is used to identify the session of this row. Route score
represents the score of one route. The score can be the
energy consumed to transmit one byte of data or transmis-
sion efficiency, depending on scoring policy. For instance,
energy saving policy uses energy utilization to evaluate a
route and represents indicates the amount of consumed en-
ergy to send one byte of data. Hence, the smaller energy
utility the better. On the other hand, throughput policy
may use transmission efficiency to evaluate a route. The
unit of transmission efficiency can be amount of time for
transmitting one byte of data.

Figure 10 shows an example of WuKong network. There
are four WuDevices in the network. The orange block in-
side WuDevice stands for Wi-Fi interface, and yellow block
stands for Z-wave interface. The number labeled on each box
represents LID of the interface. For example, WuDevice W2

has one Z-wave interface whose LID is 12, and no Wi-Fi
interface. Without losing generality, the GID of WuDevice
W1, W2’, ... are assigned 1, 2, ..., etc.

W3

ID=33 ID=13

W4

ID=31 ID=11

W1

ID=33 ID=14

W2

ID=12

ID

ID

WiFi Interface

Z-Wave Interface

Figure 10: An example network of WuDevices

Table 2 shows the routing table on WuDevice W1. In this
example, the routing to WuDevice W2 selects Z-wave inter-
face on WuDevice W1; the route to WuDevice W3 selects
the Wi-Fi interface on WuDevice W1. There is no direct
link between WuDevice W1 and WuDevice W4. Hence, the
route to WuDevice W4 selects WuDevice W2 as the next hop
and its interface is Z-wave on WuDevice W1.

Table 2: Routing Table on WuDevice
Destination

GID

Next-
hop
GID

Next
hop LID

Next
hop in-
terface

Session
ID

route
score

1 - - - - -
2 2 12 Z-wave 1 0.2
3 3 33 Wi-Fi 1 0.25
4 2 12 Z-wave 2 0.45

4.2 Meta-Routing Table Update

4.2.1 Node Insertion and Deletion.
To insert new nodes to the network, node Nx will broadcast
two types of routing messages: one is route scoring mes-
sage and the other one is table update message. When node
Nx joins the network, it broadcasts a route scoring message
(RSM) to construct its routing table. The message consists
of current route scores and previous hop of all the routes in
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the table, which can be empty when joining the network for
the first time. When the neighbors receive routing table of
node Nx in RSM, the node calculates a new route score by
adding/subtracting one hop score to/from the current score.
The route score will be updated only if the new route score
outperforms the current route score. Otherwise, it will keep
the previous route score.

In the second step, node Nx broadcasts a table update mes-
sage (TUM) to all its neighbors to collect latest routing ta-
ble. While receiving TUM, the node replies its routing table
to node Nx. To avoid duplicated table update, TUM will
be transmitted for one hop only. Hence, the communication
sub-system, including that on MPTN gateway and WuDe-
vice, does not forward RSM. Node Nx waits for a time-out
interval to collect the replies from its neighbors. After the
timeout period, node Nx constructs its own routing table
according to neighbors’ replies. For each entry having same
destination GID, node Nx keeps the entry whose the route
score is the minimal/maximal, and discards the other replies.
After constructing the routing table, node Nx periodically
checks the routing table. If the routing table changes, node
Nx broadcasts the changed entries in routing table to the
network.

Every other reachable node updates the routes to node Nx

on its routing table. Due to multi-path broadcast, the node
may receive more than one route scoring message (RSM) re-
quest from node Nx. Hence, the node selects the best, either
minimal or maximal, route score to update its local routing
table. While updating the table, it collects destination GID,
session ID, and route score from RSM request. In particu-
lar, previous hop GID information in RSM request will be
inserted to local routing table as next hop GID. When a
node receives TUM request from node Nx, it replies its full
routing table.
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ZB

W2

1232

W5

1535

W7

27 1737

Z-Wave

Figure 11: The example of network topology

Figure 11 shows the network topology for following exam-
ples. In this topology, WuDevice W2, W5 and W0 are al-
ready registered to WuMaster. WuDevice W7 is the new
node. Table 3 shows the routing table on WuDevice W0 be-
fore WuDevice W7 joins the network. Figure 12 shows the
process of registering a new node to WuMaster. In the first
step, WuDevice W7 broadcasts RSM request to its neighbors
(WuDevice W0 and W5), shown as Step 1.1 in Figure 12.
After receiving RSM request, WuDevice W0 and W5 broad-
cast again the request to their neighbors (WuDevice W2),
shown as Step 1.2 in Figure 12. The broadcast will stop
when the node receives the same request. Finally, WuDe-
vice W2 replies the message to its neighbor (WuDevice W0

and WuDevice W5), but WuDevice W0 and W5 will ignore

Table 3: Routing Table on WuDevice W0 before
WuDevice W7 join network
Destination
GID

Next-
hop
GID

Next
hop LID

Next
hop in-
terface

Session
ID

Route
score

0 - - - - -
2 2 32 Wi-Fi 13 15
5 2 32 Wi-Fi 16 25

the request, shown as Step 1.3 in Figure 12. In second step,
WuDevice W0, W2 and W5 update their routing tables ac-
cording to the routing table in RSM request in first step. Ta-
ble 4 shows the routing table on WuDevice W0 after second
step. In third step, WuDevice W7 broadcasts TUM request

Table 4: Routing Table on W0 after W7 joins network
Destination
GID

Next-
hop
GID

Next
hop LID

Next
hop in-
terface

Session
ID

Route
score

0 - - - - -
2 2 32 Wi-Fi 13 15
5 2 32 Wi-Fi 16 25
7 7 37 Wi-Fi 22 10

to its neighbors (WuDevice W0 and W5) for their routing ta-
ble. In forth step, WuDevice W0 and W5 reply their routing
tables to WuDevice W7. In fifth step, WuDevice W7 selects
the route with minimal route score from replies, and then
updates its own routing table.

W7
W0 W5 W2

1.1

1.1
1.2

1.2

1.3

1.3

3

3

4

4

6.1

6.1

6.2

6.2

2

2

2

5

1.1~1.3: Broadcast routing test

2: Update routing table

3: Broadcast routing ask

4: Unicast routing reply

5: Update routing table

6.1~6.2: Periodic update

Figure 12: The procedure for node insertion

In sixth step, WuDevice W7 learns its routing table has
been changed and, hence, broadcasts the changed routing
table to its neighbors (i.e., WuDevice W0 and W5), shown
as Step 6.1 in Figure 12. According to the updates, WuDe-
vice W0 learns the route including WuDevice W7 and W5

is better than the route including WuDevice W2 and W5.
Finally, WuDevice W0 learns that its routing table has been
changed and, hence, broadcasts the updated routing table
to its neighbors, i.e., WuDevice W2 and W7, shown at Step
6.2 in Figure 12.
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Figure 13: The time sequence of adding new device
W7

Figure 13 shows the time sequence of adding WuDevice W7.
In step 1: WuDevice W7 sends new node information (partial
routing table) to WuDevice W5 and WuDevice W0, and then
WuDevice W5 and W0 reply the message to WuDevice W2.
In step 2: WuDevice W2, W5 and W0 update their routing
table from new node information. In step3 and 4: WuDevice
W5 and W0 reply their complete routing table to WuDevice
W7. In step 5 and 6: WuDevice W2 updates its routing
table, and sends periodic update message to WuDevice W5

and W0. Because the routing information from WuDevice
W2 already exist in WuDevice W5 and W0, the update is ig-
nored. WuDevice W7 creates its routing table from replied
messages, and then sends full routing table while doing pe-
riodic update. WuDevice W0 finds a shorter route from the
periodic message, so WuDevice W0 updates its routing table
and then sends the shorter route information (partial rout-
ing table) in next periodic update. Finally, WuDevice W0’s
periodic update information doesn’t affect any other node,
the network finish adding a new node.

After step 6, WuDevice W0 knows that the shortest route
is (W0, W7, W5)p. WuDevice W0 updates its routing table,
and broadcasts the information to neighbor. Assume Ny

is a node in network. If WuDevice W0 updates its routing
table from WuDevice W7, the route must be (W0, W7, Ny)p.
WuDevice W0 broadcasts the information to WuDevice W7,
the route (W0, W7, Ny)p > (W7, Ny)p, WuDevice W7 will
not update the routing table, therefore there is no updating
loop.

4.2.2 Routing Table Update for Node Failure.
The following presents are procedures to handle device fail-
ure in the network. Again, for the sake of presentation,
destination node is represented by Nd, source node is repre-
sented by Ns, failed device is represented by Nf , the hop on
the route before node failure is represented by Ne, and the
failed interface on node Nf is represented by If .

When WuDevice Ne learns that it cannot forward messages
to WuDevice Nf , WuDevice Ne records the GID of next hop

Nf and its interface If . Then, WuDevice Ne broadcasts to
ask its neighbor for how to reach Nd. WuDevice Ne’s neigh-
bors look up their routing tables to find the route to node
Nd, and then reply the next hop GID, next hop interface
and route score on the route to WuDevice Ne. Last, WuDe-
vice Ne checks neighbors’ replies if there is any route whose
next hop is different from WuDevice Nf or whose next hop
interface is different from interface If . If exists, WuDevice
Ne forwards the message to the neighbor which has the best
route scores and meet these requirements. If there is none,
WuDevice Ne will notify WuDevice Ns that the message
cannot be sent and WuDevice Nd is not reachable.
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Wi-Fi
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W3

W8

W5

Initial route 

Failed Node

Z-wave

Figure 14: An example of routing table update for
failure handling

Figure 14 shows an example of routing table update for fail-
ure handling in WuKong gateway. In this example, W5 is
the source node and W0 is the destination node. (W5, W4,
W9, W0)p is the route from W5 to W0. However, W9 fails
and is not reachable any more.

At first, W5 sends data to the next hop, i.e., W4. W4 search
its routing table for the route to W0, and learns that next
hop is W9. W4 tries to forward message to W9, but W9

doesn’t have any response. When W4 learns that W9 is un-
reachable. W4 records the GID of W9 and Wi-Fi interface.
W4 broadcasts to its neighbors (W5, W8, W3, W7) for how to
reach W0. After receiving the request from W4, the neigh-
boring WuDevices checks their routing tables, and reply the
GID of next hop, next hop interface and route score for the
route to W0. The next hops replied by W5, W3, W7 and W8

are W4, W0, W6 and W9, respectively. After collecting all
these replies, W4 discards W4(current node) and W9’s Wi-Fi
interface. The replies from both W3 and W7 can reach W0.
Since W3’s score is better than W7’s score, W4 selects W3

as next hop and recover the route to W0. Next, W4 sends
the table update message to its neighbors W5, W8, W3, W7

in the following periodic update. W3 and W7 ignore the up-
dating message because the route is not better than current
route. W5 updates its routing table because the next hop to
destination is W4. W8 updates its routing table because the
next hop to destination is a failed node.

Figure 15 presents the time sequence of handling WuDevice
W9’s failure.

4.2.3 Periodic Routing Table Update.
To avoid the overhead of on-demand route update, every
WuDevice will update its routing table periodically. If the
table changes between the periods, it will broadcast the dif-
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Figure 15: The time sequence of node fail

ference to its neighbors. The receiving WuDevice checks its
routing table if any update is required. If any route in the
update message is new to the receiving WuDevice, a new
entry will be inserted to the routing table. Otherwise, it
compares route score and next hop with its routing table.
It updates the routing table in two cases. The first case is
that the route score in update message is better than that
in its routing table. The second case is that the next hop
in routing table is the source node of update message. This
means the next hop may discover a failed node and repair
its routing table in this case. WuDevice should update its
routing table because the update message comes from the
next hop.

5. PERFORMANCE EVALUATION

5.1 Workload Parameters
To evaluate the performance of meta-routing mechanism,
the experiments are set to evaluate two metrics. The first
evaluation is the time overhead for fault recovery and rout-
ing table propagation delay. To evaluate the effectiveness
of fault handling mechanism in MPTN gateway, three per-
formance metrics are measured. End-to-End message trans-
mission time refers to the time interval taken to send at
source node and to receive a message at destination node
when there is no fault. Fault recovery delay refers to the
time interval from the time instance at which the fault is
detected to that at which the message is forwarded to a re-
cover route if exists. Routing table propagation time refers
to time interval from the time instance at which the fault
is detected to that at which the routing table being recov-
ered on source node. The second evaluates the correlation
between number of connected neighbors and fault recovery
period.

The experiments were conducted on ten WuDevice Gen. 2
boards, which are Arduino-compatible devices. The devices
have Z-Wave network interface on board and can install Ar-
duino compatible Wi-Fi or ZigBee shields to support Wi-Fi
or ZigBee network. When more than one network interface
are installed, the device can serve as an MPTN gateway to
forward messages between different network protocols. The
period for updating routing table is set to 3000 ms and fault
detection timeout is set to 3000ms.

The network topology of the experiment is shown in Figure
16. There are ten WuDevices in the network. WuDevice W1

is only equipped with Wi-Fi interface. WuDevice W5, W7

and W8 are only equipped with Z-wave interface. The other
nodes are equipped with both Wi-Fi and Z-wave interface.
Figure 16 also shows an example route before any WuDevice
fails. In particular, (Z-wave on W5, Wi-Fi on W4, Wi-Fi on
W3)p is the route to send messages from WuDevice W5 to
Master.

Figure 16: The network topology for experiment set-
ting

The workload is a smart home application shown in Figure
17 in flow-based programming model. The application is
designed to control the air conditioner in the room based
on the temperature reading and occupancy of the room.
If any user is presented in the room and the temperature
is greater than threshold, the application will turn on air-
conditioner. WuKong maps the applications to use motion
sensors and infra-red sensors to detect whether the user is
presented in the room or not. There are three rooms in the
smart home. The sensors are connected to WuDevice W7,
W3 and W5 respectively in three rooms. The data destina-
tions are WuDevice W1, WuMaster and W9 respectively in
three rooms. Figure 16 also shows the route for the data
flows: (W7, W6, W2, W1)p is the message route for room
R1, (W5, W4, W9)p is the message route for room R2, and
(W3, Master)p is the message route for room R3.
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Figure 17: Example smart home application in flow
base programming
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5.2 Evaluation Results
To evaluate the effectiveness of fault handling mechanism in
MPTN gateway, three performance metrics are measured.
End-to-End message transmission time refers to the time in-
terval taken to send at source node and to receive a message
at destination node when there is no fault. Fault recovery
delay refers to the time interval from the time instance at
which the fault is detected to that at which the message is
forwarded to a recover route if exists. Routing table prop-
agation time refers to time interval from the time instance
at which the fault is detected to that at which the routing
table being recovered on source node.

40

42

44

46

48

50

52

54

56

58

60

0 2 4 6 8 10 12 14 16 18 20

m
s

instances

Normal sending time
Normal sending time:

Average = 49.15 Bytes/s

SD = 5.8

Figure 18: End-to-End Message Trnamission Time

In this experiment, the average end-to-end delay for messag-
ing is 49.15ms and its standard deviation is 5.8, which is 10%
of the average value. The fault handling overhead for three
different types of faults are evaluated in the experiments. In
the first experiment, Wi-Fi interface on WuDevice W3 fails
and, hence, the route from WuDevice W4’s Wi-Fi interface
to W3 is not available any more. WuDevice W4 broadcasts
to ask neighbors through Z-wave. Four neighbors, i.e., W5,
W8, W9 and W3, reply the routes to the master on their
routing tables to WuDevice W4. Figure 19 shows the results
for handling the failure. The average fault recovery time is
3053.5 ms and standard deviation is 36.63. Note that among
the fault recovery time, the gateway waits for the timeout
period to learn that a device fails. Hence, it takes less than
100ms in average to recover the failure. The average rout-
ing table propagation delay in this experiments is 1552.55
ms and standard deviation is 790.43. While checking the log
of the experiments, we find that the variation on propaga-
tion delay on table update was caused by the MAC control
in Z-wave protocol.
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Figure 19: Fault recovery time and routing table
propagation time when WuDevice W3’s Wi-Fi inter-
face fails

In second experiment, WuDevice W3 completely fails and
cannot communicate with other nodes via both Wi-Fi and Z-
Wave interface. Hence, the route from WuDevice W4 to W3

is not valid any more. After learning the fault, WuDevice W4

broadcasts to ask its neighbors for the route to WuMaster.
Three neighbors, i.e., W5, W8, and W9, reply their routes to
WuMaster to W4. Figure 20 shows the results in this case.
The average fault recovery time is 3057.4 ms and standard
deviation is 36.98. The average routing table propagation
time is 1535.05 ms and standard deviation is 821.79.
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Figure 20: Fault recovery time and routing table
propagation time when WuDevice W3 fails

In third experiment, WuDevice W4 fails. The route from
W5 to W4 is not valid any more. Hence, WuDevice W5

broadcasts to ask its neighbor to find a new route. Figure
21 shows the results in this experiment. The average fault
recovery time is 3055.4 ms and standard deviation is 38.4.
The average routing table propagation time is 52.3 ms and
standard deviation is 0.48. This case has the smallest rout-
ing table propagation time because the source node detects
the fault and updates its routing table. These experiments
show that all routing table propagation time is less than
(N + 1)*(update period), where N is the number of hops to
source node.
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Figure 21: Fault recovery time and routing table
propagation time when WuDevice W4 is failed

The second part of the experiments evaluate the correla-
tion between the number of neighbors and the fault recovery
overhead. A node uses Z-wave interface to broadcasts the
asking packet to its neighbors and the neighbors reply to the
node. We measure the time interval from the time the node
send request to its neighbors until the time it receives the
corresponding reply. The number of neighboring nodes is
5,10, and 15. Figure 22 shows the results. In the first case,
five neighbors reply messages to the node. The average time
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is 290.45 ms and standard deviation is 15.52. In the second
case, ten neighbors reply the message to the node. The av-
erage time is 562.5 ms and standard deviation is 21.62. In
the third case, fifteen neighbors reply the message to the
node. The average time is 852.4 ms and standard deviation
is 22.74. According to the results, we observe that fault re-
cover period is closely related to the number of neighbors.
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Figure 22: Fault Tolerance Overhead

6. CONCLUSION
Communication among devices in machine-to-machine
(M2M) and Internet-of-Things (IoT) systems are an essen-
tial feature for these systems. In many M2M and IoT sys-
tems, network topology of the devices change from time to
time, and network interface on devices vary from one de-
ployment site to another one. To support dynamic connec-
tivity and heterogeneous network protocols in the system,
Multiple Protocol Network Transport (MPTN) gateway is
designed to be a distributed messaging gateway to enable
messaging among multiple networks. To leverage the rout-
ing capability in existing network protocols, MPTN gateway
converts an end-to-end message request to a multiple seg-
ment message based on network topology. A meta-routing
protocol is designed and implemented in MPTN gateway to
support distributed and dynamic routing for heterogeneous
networks in M2M and IoT systems. Performance evaluation
shows that the proposed approach can effectively manage
the routing table in distributed manner, and enable com-
munication among multiple network protocols in M2M and
IoT systems.
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ABSTRACT
Evolutionary algorithms are population-based, metaheur-
istic, black-box optimization techniques from the wider fam-
ily of evolutionary computation. Optimization algorithms
within this family are often based on similar principles and
routines inspired by biological evolution. Due to their ro-
bustness, the scope of their application is broad and varies
from physical engineering to software design problems. Des-
pite sharing similar principles based in common biological
inspiration, these algorithms themselves are typically viewed
as black-box program routines by the end user, without
a deeper insight into the underlying optimization process.
We believe that shedding some light into the underlying
routines of evolutionary computation algorithms can make
them more accessible to wider engineering public.

In this paper, we formulate the evolutionary optimization
process as a dynamic system simulation, and provide means
to prototype evolutionary optimization routines in a visually
comprehensible framework. The framework enables engin-
eers to follow the same dynamic system modeling paradigm,
they typically use for representation of their optimization
problems, to also create the desired evolutionary optimizers
themselves. Instantiation of the framework in a Matlab-
Simulink library practically results in graphical program-
ming of evolutionary optimizers based on data-flow prin-
ciples used for dynamic system modeling within the Simulink
environment. We illustrate the efficiency of visual repres-
entation in clarifying the underlying concepts on executable
flow-charts of respective evolutionary optimizers and demon-
strate features and potential of the framework on selected
engineering benchmark applications.

CCS Concepts
•Mathematics of computing → Evolutionary algo-
rithms; •Software and its engineering → Data flow
languages; Flowcharts; Data flow architectures; Visual
languages;

Keywords
Optimization, Matlab Simulink, Evolutionary Algorithms,
Dynamic systems, Data Flow, Visual Programming
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1. INTRODUCTION
Visual representation of information, allowing to quickly
communicate and share ideas, forms an important part of
scientific and engineering progress, with applications varying
from physics to software. Visualization has especially proven
valuable in fields where sharing and quick communication
of ideas is important. Utilizing schemas and charts we ex-
ploit natural way of perceiving information in humans [21].
These underlying principles of our perception have especially
been exploited in educational praxis, where quick adoption
of concepts is essential. In computer science for instance,
flowcharts showing operations that take place inside of an
algorithm are often used to demonstrate students the func-
tion thereof. In the same manner, physical system models
are often presented using schemas decomposed into element-
ary concepts in mechanical, civil or electrical engineering
fields [18], with dynamic system modeling [23] as a promin-
ent formalism used to describe affiliated tasks.

Traditionally, wide variety of engineering tasks from civil
to control engineering can be formulated in the form of
an optimization problem. This formulation naturally cov-
ers situations when we try to, e.g., minimize time, space or
resources, or maximize utilization and speed, respectively.
Due to their robustness, evolutionary algorithms [14] and
other optimizers from the evolutionary computation fam-
ily [2] have proven useful in finding high quality solutions
when complex engineering systems are in scope of optim-
ization [9]. Whereas there are many frameworks enabling
engineers to employ variety of (evolutionary) optimization
tools to tackle the problems in scope, these tools are typ-
ically strictly decoupled from formulation of the problem
itself. This means that the functioning of the optimizer is
black-box w.r.t. to the user and the system being optimized
(and vice versa). The subject of this work is to overcome
this limitation and merge the problem formulation with re-
spective optimization design under a common paradigm of
dynamic system modeling.

Although the visual representation has proved to be a power-
ful tool for rapid prototyping of dynamic system models,
its practical use in computer science was traditionally lim-
ited to conceptualization only, clearly separated from the
implementation phase. We aim to pass this barrier with
the paradigm of graphical programing [28] to let engineers
design respective evolutionary optimization algorithms in
the same, natural and visually comprehensible manner. Fol-
lowing this paradigm we have created VisualEA library [32]
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Figure 1: Visualization of the evolutionary optimiz-
ation algorithm cycle

for Matlab Simulink [24], a graphical programming language
widely adopted in variety of engineering fields, formalizing
the decomposition of complex systems into atomic elements,
defined by a rich set of libraries for various engineering do-
mains. The VisualEA toolbox extends the functionality of
Simulink with evolutionary and other iterative optimization
algorithms from the evolutionary computation family. Al-
though the original goal of the library was to serve as an
education tool for evolutionary algorithms [31], utilizing the
correspondence with visual charts that are often used in ex-
plaining the functionality of iterative optimizers, its poten-
tial has reached further. In this paper we introduce the
idea of dynamic system modeling of evolutionary algorithms,
present the optimization routines in scope, illustrate their
corresponding visual representations, outline an architecture
of the library, and demonstrate its potential on selected en-
gineering optimization benchmarks.

2. EVOLUTIONARY OPTIMIZATION
Optimization is a prominent formalism used for a wide vari-
ety of tasks across different domains. Optimization can be
seen as a selection of the best element from a set of available
alternatives, with regard to some given criteria and a loss
(fitness) function. In the engineering fields, where complex
non-linear systems are often in scope of optimization, evolu-
tionary computation methods [1] proved as a valid optimiz-
ation technique for finding globally optimal or near-optimal
solutions [9].

Evolutionary Algorithms (EA) are the most prominent ex-
amples from the evolutionary computation family of optim-
izers. EA is a generic population-based meta-heuristic op-
timization technique. This means that, generally speaking,
it belongs to the family of “trial and error” problem solvers,
iteratively improving a whole set of solutions, rather than
just a single point in the search space, in a stochastic man-
ner. This is an important factor for robustness of the op-
timization within the complex systems area. From computer
science point of view, evolutionary computation is viewed as
a subset of computational and artificial intelligence [12].

Algorithm 1 Evolutionary Algorithm Routine

1 X(0) ← initialize()

2 f (0) ← evaluate(X(0))

3 g ← 0

4 while (¬terminalCondition) do

5 Xpar ← select(X(g), f (g))

6 Xoff ← crossover(Xpar)

7 Xoff ← mutate(Xoff )

8 foff ← evaluate(Xoff )

9 [X(g+1); f (g+1)]← Draw(X(g), Xoff , f
(g), foff )

10 g ← g + 1

11

12 return bestOf(X(g), f (g)) . best found solution

In the process of evolutionary computation, there are gener-
ally two main forces that form the basis of optimization sys-
tems. Whereas recombination forces the necessary diversity
and thereby facilitates novelty, selection acts as a force in-
creasing the quality. The stochastic character then becomes
apparent in both the recombination phase, randomly chan-
ging pieces of candidate solutions, and the selection phase,
where the candidates are chosen with increasing probability
based on their quality [1].

2.1 Family of Algorithms
The most prominent example of evolutionary computation
are Evolutionary Algorithms (EA), using mechanisms in-
spired by biological evolution, such as reproduction, muta-
tion, crossover, and selection, where candidate solutions to
the optimization problem play the role of individuals in a
population, and a fitness function, representing a generic
loss function to be minimized, determines the quality of the
individuals. Rather than enumerating specific algorithms,
the evolutionary computation can better be described as a
family of algorithms following similar optimization routines,
where the evolution of the population takes place with a
repeated application of the evolutionary operators, such as
visualized for EA in Figure 1 and described in Algorithm 1.

In the category of evolutionary computing there are, to-
gether with EA, many other meta-heuristic population based
optimization approaches inspired by biology and evolution,
such as ant colonies [7], particle swarm optimization [4], and
genetic programming [3]. Other more loosely inspired ap-
proaches, focused more on the underlying stochastic and
mathematical properties, include Evolution Strategies such
as covariance matrix adaptation [17] and estimation of dis-
tribution [22] algorithms. These methods differ in one or
more aspects from the original EA routine, such as omit-
ting the recombination phase, or by using some specialized
operators, but generally follow a similar stochastic, popu-
lation based, iterative routine as depicted in Figure 1, and
we will introduce some representatives under the graphical
programming paradigm in Section 4.1.
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2.2 Evolution as a Dynamic System
A dynamic system is a concept from mathematics where
a fixed rule set describes how a point s in a state space
S depends on time t ∈ T . These rules are often formally
viewed as an evolution function φ ∈ Φ, endowing the state
space S by mapping each point s ∈ S back into S for any
given time t ∈ T . Depending on the representation of time
T , dynamic systems can be further divided into continuous
and discrete, where the corresponding evolution functions Φ
are typically viewed as solutions of differential (ẋ ← φ(x)),
or difference (xt+1 ← φ(xt)) equations, respectively, with
the order of the equation corresponding to the order of the
modeled system [29].

There are many works utilizing evolutionary optimizers for
the design and parameter tuning of dynamic systems [10,
19], prominent e.g. in the control system theory, however
considering evolutionary optimizers themselves under the
dynamic system paradigm, together with the system they
optimize, has not yet been considered a subject of scientific
inquiry. Although this view of evolutionary optimizers is not
common within the community, probably for the fact that
it does not offer any special advantages in the traditional
optimization sense, the formulation of evolutionary optim-
ization as a dynamic system should not cause any confusion
as it is consistent and also unifies the formulation of the
both the optimizer and the system in scope, which might be
beneficial simplification for visual comprehensibility (Sec-
tion 3.1).

Referring to the notation used in Algorithm 1, we set up a
formalism where the state s ∈ S of the dynamic EA system
(algorithm) will be given by a current population matrix

s← X(t), X ∈ Rm×n, t ∈ T ⊂ Z, and the evolution function
φ ∈ Φ will be composed of sequential aggregate of the EA
operators (selection, recombination,. . . ), operating on the

actual state matrix X(t) as

X(t) =
(
replace

(
mutate

(
crossover

(
select(X(t−1))

))))
This clarifies the view of the standard evolutionary routine
from Algorithm 1 as a first order discrete dynamic system
with evolution function φ : Rm×n 7→ Rm×n, i.e. formally

X(t) ← φ(X(t−1))

Embracing this idea, we will be able to demonstrate that
the EA routine itself can effectively be modeled as a dis-
crete dynamic system of the first order and by those means
efficiently introduced into the dynamic system model simu-
lation environment of Simulink.

3. FRAMEWORK ARCHITECTURE
General idea of the framework is to introduce the process
of evolutionary computation under a comprehensible visual
paradigm used for dynamic system modeling. Towards that
purpose there are several graphical programming environ-
ments that might be considered, but as already suggested,
we decided to utilize the graphical data-flow framework of

Simulink, a popular environment primarily designed for dy-
namic system modeling which enables us to fully benefit 
from the dynamic system formulation of evolutionary com-
putation. Moreover, Simulink is probably the most wide-
spread modeling environment within the engineering com-
munity [20], especially considering the integration with Mat-
lab.

In this chapter we introduce the overall framework of graph-
ical programming of evolutionary algorithms via dynamic 
system modeling in Simulink. We introduce general ideas 
of graphical programming, and proceed from classical flow-
charts to Simulink’s diagrams for dynamic system model-
ing. We then describe the underlying data-flow principles 
and interfaces of the used blocks to conclude with the final 
architecture of the resulting library.

3.1 Graphical Programming
Graphical (visual) programming [28] generally tries to integ-
rate the phases of draft visual design and rapid development 
of algorithms. It is becoming popular in several engineering 
and software related fields such as design, modeling, and 
data processing, especially for its natural display of com-
mon concepts for people with varying (non-programming) 
background. Graphical programming languages generally 
let users create programs by manipulating program elements 
graphically rather than by specifying them textually, util-
izing visual expressions, spatial arrangements and various 
graphical symbols.

Graphical programming environments provide symbolic ele-
ments which can be manipulated by users in an interactive 
way according to a specific spatial grammar for program con-
struction. These can be further divided into icon-based lan-
guages, form-based languages, and diagram languages, ac-
cording to the type of visual expressions being used [25]. In 
design of visual programs, different shapes, colors, and spa-
tial arrangements of operations are typically used to guide 
users in understanding of program’s concepts. One of the 
overall most common visual design paradigms is the idea 
of “boxes and arrows” [33], where specific subparts and ele-
ments of a system can be hierarchically embedded within 
boxes (or other shapes), whereas the arrows correspond to 
information exchange, most commonly representing either 
control or data flow within the system (e.g., Figure 1).

In graphical programming in general, the boxes and lines can 
be used to describe many models of computation. One typ-
ical example is a flow chart, which also consists of blocks and 
lines, however, a classic flowchart paradigm is limited for our 
cause as one cannot describe general dynamic systems using 
regular flow chart semantics. To overcome the limitation of 
basic flow charts, standardly used in graphical programming 
languages, we reach to Simulink’s time-based block diagrams. 
These block diagrams differ from other forms of “boxes and 
arrows” charts in that they explicitly describe dynamics of 
the modeled systems.

3.2 Dynamic System Modeling
Modeling dynamic systems in Simulink follows its estab-
lished block diagram semantics, where the classic block dia-
gram model of a dynamic system graphically consists of
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Figure 2: EA routine drafted as a diagram of a dynamic system in raw Simulink

blocks and lines (signals) [24], just as in the common graph-
ical programming paradigm. However, these block diagram
models are traditionally derived from engineering areas such
as feedback control theory. A block within a block dia-
gram defines a dynamic system by itself and the relation-
ships between each elementary dynamic system in a block
diagram are illustrated by the use of signal lines connect-
ing the blocks. These blocks and lines in a block diagram
collectively describe the overall dynamic system. Simulink
extends this semantics with virtual blocks for organizational
convenience to improve the overall readability, which is be-
neficial for presenting complex evolutionary systems.

In contrast to regular flow charts, Simulink block diagrams
define time-based relationships between signals and state
variables (see formalism in Section 2). The solution of a
block diagram is obtained by evaluating these relationships
over the time of simulation. Each evaluation of these rela-
tionships is referred to as a time step [24], which in our case
is the transfer from one generation of solutions to the next.
Signals represent quantities that change over time and are
defined for all points in time between the block diagram’s
simulation start and stop time. These signals in our case
are matrices of population genomes and vectors of fitness
evaluations (see Section 3.3 for closer description). The re-
lationships between input signals, state variables and output
signals are defined by a set of equations or methods repres-
ented by blocks. These block methods in our case are the
evolutionary operators that the optimization routines con-
sist of (see Figure 1). Inherent in the definition of these
operators is the notion of parameters, which are the typic-
ally static coefficients found within respective methods (see
Section 4.2 for extension). The block diagram model is then
a subject to simulation carried out by one of Simulink’s solv-

ers. In our case of discrete dynamic evolutionary systems,
the choice is discrete fixed-time step simulation solver, since
each population of solutions is generated in that fashion.

With the block diagram formalism for dynamic system sim-
ulation being clarified, we may now introduce the idea of
modeling an evolutionary algorithm within the framework of
Simulink by a schema depicted in Figure 2. In the schema,
the EA operators, originally introduced in Figure 1, are rep-
resented as separate subsystems connected through the sig-
nal link, carrying generally the state s of the system, which,
in our case, is the population matrix X ∈ Rm×n (for more
details see Section 3.3). Importantly, the single unit delay
block 1

z
denotes we work with a dynamic system of the first

order and implies the invocation of the appropriate simula-
tion solver.

3.3 Data-flow Principles
A data-flow programming is a modern approach in which
a stream of data is passed from instruction to instruction
for processing. This stands in contrast to a typically used
control-flow principle, upon which the majority of main stre-
am languages is based to date (e.g., Java, C, Python). Data-
flow programming principles are beneficial for our cause,
since they naturally reflect the features of both dynamic
system modeling and graphical programming. The data-
flow programming languages, modeling programs as directed
graphs of the data flowing between operations, often form a
perfect interface for visual programming to implement the
desired principles. Data-flow based visual programming lan-
guages are then particularly popular for their natural grasp
of parallelization [8].
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In the Simulink environment, these principles of data-flow
backed visual programming allow for the idea of boxes and
arrows to be naturally transformed into engineering schemas,
where the boxes generally represent subsystems and the ar-
rows denote the data-flow between them (as discussed in Sec-
tion 3.2). From the schema introduced in Figure 2, we can
deduce that the intended block-set library should consist of
hierarchical categories of blocks encompassing the individual
operators from which the particular instantiations of various
optimizers can be assembled, i.e., initialization, recombina-
tion, mutation, evaluation, replacement, and auxiliary con-
trol blocks. To conclude this specification, we provide the
necessary data-flow interfaces for these categories in Table 1.

Table 1: Specification of data-flow interfaces of
basic EA operators transforming state of the model
of evolutionary algorithm carried by signal links

Type of block
In

Out

Initialization
Initial pop. X(0)

Fitness function
Population X(t)

Evaluated pop. {X(t); f (t)}

Selection
Evaluated pop. {X(t); f (t)}

Population X
(t)
par

Recombination
Population X

(t)
par

Population X
(t)
off

Replacement strategy
{(X(t)

off ; f
(t)
off ) ∪ (X(t); f (t))}

Eval. new pop. (X(t); f (t))

Iterator
(X(t); f (t))

(X(t+1); f (t+1))

3.4 A Simulink’s Library
Practical contribution of the introduced framework is ex-
tending Simulink with a block-set library of the operators
from evolutionary computation, for which we have estab-
lished a simple formalism of evolutionary optimization as a
discrete dynamic system in Section 2.2, which was an im-
portant step in clarification of the software architecture of
the VisualEA library. Firstly, unlike the natural perspective
following object-modeling approach, from the dynamic sys-
tem perspective it is clear that units within the population
should be considered jointly by the means of a population
matrix determining the state of the algorithm and the sig-
nal carried between subsystems. This choice of representa-
tion enables greater flexibility, further extendability of the
library, and also naturally exploits matrix transformation
capabilities of Matlab-Simulink. Secondly, the first order
discrete system point of view clarifies the state-space split

of the optimization routine in terms of unit delay blocks 1
z
.

This formulation also forces Simulink to use the fixed-step
size discrete iterative simulation mode, rather than calling
typical “algebraic loop” solvers.

The Simulink environment provides a graphical editor that
allows to create and connect instances of block types selec-
ted from block libraries via a library browser. Libraries of
blocks are provided representing elementary systems that
can be used as building blocks. Apart from built-in blocks
Simulink enables to provide custom block types and use the
editor to create instances of these in a diagram. There are
several ways to bring this custom functionality into Sim-
ulink, either graphically or programmatically. The most
natural and convenient way is to create the functionality
graphically while building on top of the existing blocks. Un-
fortunately these do not provide sufficient functionality for
our cause. Second option is to integrate custom code into
the system, for which there are following options.

• Function (basic mathematical expressions)

• Matlab function (all expressions from Matlab)

• Embedded Matlab function (static subset of Matlab)

• S-function (Simulink-specific language for blocks)

The VisualEA block-set was implemented almost solely us-
ing embedded Matlab, a subset of the Matlab language put-
ting a number of static restrictions on the language to en-
able a direct generation of C code from Matlab algorithms.
This option retains most of the expressiveness of Matlab
and offers a considerably efficient way to implement the re-
quired functional blocks, where each one implements a com-
mon interface for the given data-flow category (Table 1) of
operators. Using embedded Matlab for implementation of
VisualEA we do not trade-off comprehensibility for perform-
ance, as is usually the case with graphical programming, but
leverage both at the same time (as compared to a regular
Matlab implementation).

From the specifications in Table 1, we can notice that the
signal carried between the blocks might actually be of dif-
ferent types, including a population matrix X ∈ Rm×n and
a vector of individual fitness values f ∈ Rm, which we omit-
ted in the previous formalism (Section 2.2) for simplicity
(the signal format may further differ for different variants
of evolutionary optimizers introduced in Section 4.1). The
fitness values are created within the fitness function block,
encompassing the generator g of evaluations f ← g(x) for
the candidate solutions x ∈ rows(X) of EA, which can be
represented by another (dynamic) system sharing the given
data-flow interface. We will provide examples of custom fit-
ness systems in Section 5.

This completes the key idea and the specification of the core
building blocks of VisualEA, displayed in Figure 4. The
concept and structure of the models rises naturally from the
draft design outlined in Figure 2. Utilizing the library [32],
we can now translate the draft Simulink schema into execut-
able model, a particular instantiation of which is displayed
in Figure 3. This schema can now be simply run to perform
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Figure 3: A basic EA model with selected types of evolutionary operators from VisualEA library (Fig. 4)

Figure 4: Simulink’s interface of VisualEA library

the optimization routine on a given input system embed-
ded within the user-defined fitness block (see Section 5 for
fitness examples). We can see that the actual model does
not principally differ from the draft model we outlined in
raw Simulink, and should thus be comprehensible from the
pure engineering point of view. Briefly speaking, we only

covered the unit delay and switch operators within one iter-
ator block for better readability. The colors for block-sets
from the library were selected to denote operators from the
same category (Table 1), so as to guide user in understanding
and intuitive assembling of optimization loops (e.g., green
color denotes all fitness-related operations), in correspond-
ence with the original visualization in Figure 1. The final
model is thus also intelligible, without any classical program-
ming knowledge, as a pure“boxes and arrows”concept under
the general visual design paradigm.

4. FRAMEWORK FEATURES
The introduced VisualEA library implements functionality
of evolutionary optimization algorithms via simulation of
their respective dynamic system models. Although this ra-
ther unorthodox architecture might seem intriguing at the
beginning, as compared to e.g. standard (visual) program-
ming methods, it actually provides a number of interesting
features that are not typical in programming frameworks
but come along naturally with dynamic system modeling. In
this chapter we discuss two selected features the approach
provides. Firstly the flexibility of creating various optimiz-
ation models we aimed at, which is based on their decom-
position into operators represented by atomic blocks of the
library. Secondly, we describe the merit of online tuning of
meta-parameters of the evolutionary models during simula-
tion (without recompiling).

4.1 Different Evolutionary Optimizers
The introduced concept of VisualEA is not bound to a single
EA implementation, and rather offers a flexible framework
to form the whole family of evolutionary optimizers, some
of which we introduced in Section 2. Some variants can be
formed with just a slight modification of the model from
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Figure 3, such as the generational model of EA, where units
live just for the time of one generation, which can be simply
realized by omitting the replacement strategy block. Also
evolutionary strategies, using various generation or steady-
state models utilizing selection at the end of evolutionary
cycle, can be simulated as such through the replacement
strategy block.
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Figure 5: Estimation Of Distribution optimizer
modeled with VisualEA

However some of the introduced optimizers require further
modifications to be formed. As an example we provide the
estimation of distribution (EDA) family, utilizing probabil-
istic model learning and sampling to produce new genera-
tion instead of the recombination operators, a model thereof
is displayed in Figure 5. Another popular example might
be the particle swarm optimization group, utilizing genera-
tional model with unique recombination operators based on
information about actual and global best found positions of
particles, a model thereof is provided in Figure 6.
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Figure 6: Particle Swarm Optimization algorithm
modeled with VisualEA

4.2 Real-time Parameter Tuning
Parameter tuning of evolutionary algorithm routines is an
inherently tricky part of most of the optimizers [11] and
finding appropriate parameter values for evolutionary al-
gorithms is a persisting grand challenge of evolutionary com-
puting. While all researchers acknowledge that a proper
choice of parameter values is essential for desired perform-
ance of their algorithms, the tuning process is still mostly

driven by conventions (e.g. that a mutation rate should
be low), ad-hoc choices, repeated attempts and runs of the
algorithm to understand the behavior of the, more or less
black box, evolutionary optimization system in scope. While
there are strategies for a more sound parameter tuning of
EAs, e.g. by grid searching or embedding within another
meta-EA [30], these typically ignore the time-complexity of
evolutionary computation which is often extreme, and thus
the manual parameter tuning remains a usual practice.

With the visual paradigm we can provide insights not only
into the algorithm’s principal architecture, but the dynamic
system simulation approach provides insight into the optim-
ization process itself, too. This can be especially useful for
the discussed meta-parameter tuning. Similarly to any dy-
namic system, we may observe various characteristics of the
optimizer during the run, such as the typically viewed pro-
gress of fitness. But on top of a mere observation we can also
provide online feedback into the model, which is one of the
most interesting features of the approach. This functionality
is based on tunable parameters in Simulink. A tunable para-
meter is a parameter whose value can be changed during the
simulation without recompiling the model.

For instance, we might want to observe progress of optim-
izer’s performance, such as the global minimum, current(t)
minimum and average(t) fitness, provided by VisualEA with-
in a regular Simulink scope as displayed in Figure 7, to in-
terfere with the model simulation by interactively changing
the recombination, e.g., increasing the mutation rate when
the exploration seems too slow or once we get stuck in a
poor local optima. In this manner we might interactively
explore the dependence between different meta-parameters,
while observing the fitness dynamics to find optimal para-
meter settings. In this manner we may efficiently incorpor-
ate overall conventions with particular expert knowledge of
the algorithm through a reasonable amount of interactive
manual experimentation.

Figure 7: A regular Simulink scope displaying the
fitness characteristics of the evolutionary optimiz-
ation run. A result of real-time parameter tun-
ing is demonstrated on the average fitness progress
(magenta line), by manually increasing the mutation
rate at simulation time t = 50
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5. BENCHMARK APPLICATIONS
The framework of VisualEA has been successfully utilized in
several engineering benchmarks and applications. We will
provide examples of two of those for a brief demonstration.
The way to incorporate a (dynamic) system as a subject for
optimization is to include it within the fitness function block
(Figure 3). This naturally follows from the standard EA
schema (Algorithm 1). The library itself provides a number
of benchmark fitness functions for testing, e.g. the Rosen-
brock function used in some of the previous figures. Apart
from predefined functions (or systems), there is an option of
user-defined fitness function. This allows to incorporate not
only any system defined by a Simulink schema, but also to
call any external system defined by a Matlab function in its
full expressiveness.

In the first example we leave the scope of sample fitness func-
tions and demonstrate the ability to pass a non-trivial op-
timization benchmark, with potential applications for man-
ufacturing, on the problem commonly known as “packing
equal circles” (PECs) into a unit square [15]. In this prob-
lem we try to find the maximal diameter of n equal non-
overlapping circles within a square of unit size. This notion
can be reformulated by bounding just the circle centers and
recalculate the diameter afterwards. Under this formulation
we are thus maximizing the minimal pair-wise distance of
n points inside a unit square, which can be formulated as
follows.

argmax
~x,~y

(d) s.t. (1)

(xi − xj)2 + (yi − yj)2 ≥ d (2)

∀i < j ≤ n; ; xi, yi ∈ (0, 1) (3)

The PECs problem has been solved mathematically for n =
1...9, 16, 25, 36 instances and other small or symmetric pack-
ings using branch and bound algorithms. However, PECs
problem is commonly considered to be NP-complete for gen-
eral n, and bigger instances thus remain a subject for meta-
heuristic optimization, making the approach of evolution-
ary optimization appropriate. With some modifications of
the original fitness representation, we successfully utilized
VisualEA to solve this problem on several difficult instances
from n = 7..23, with results illustrated in Figure 8 and 9 for
n = 7 and n = 23, respectively.

In the second example, we demonstrate the potential of
VisualEA to optimize significantly complex engineering sys-
tems. The system in scope represents a generic bridge con-
struction (inspired by the game Bridge Builder). In the
given optimization setting, we try to find the best stable
bridge structure consisting of the least possible number of
girders provided their maximum tension limits. To bound
the originally infinite solution space of all possible struc-
tures, every constellation of girders is laid out onto a trian-
gular grid represented by a planar graph, where the girders
correspond to edges and their joints to nodes, respectively.
Based on this triangular grid we formalize the structure rep-
resentation into a finite set of elements, expressing the hori-
zontal and vertical stability of the overall structure as

∀j ∈ J :
∑

g∈Girders(j)

f(g) cos(θ(g, j)) = 0 (4)

∑
g∈Girders(j)

f(g) sin(θ(g, j)) = 0 (5)

∀g ∈ Girders(j) ∃z : e(z, j) ∨ e(j, z) ∈ Grid (6)

where f(g) are tension forces applied to each girder g corres-
ponding to some edge e(a, b) in the original Grid graph, grid
joints j ∈ J corresponding to the nodes, and the function
θ(g, j) denoting the angle of a particular girder g w.r.t. grid
joint j.

This problem setting generally falls into the category known
as multi-disciplinary system design or simply structural de-
sign optimization. There are typically two streams of ap-
proaches depending on the complexity of particular prob-
lems. For simpler formulations, mainly the methods of lin-
ear programming and gradient based solvers are used. For
more complex problems with non-linear constraints and non-
convex solution space, more robust heuristic approaches are
used, with evolutionary algorithms as the most prominent
example [27]. To demonstrate the integration capabilities of
VisualEA, we propose an approach that combines the evol-
utionary optimization with linear programming routines.

The encoding of a bridge construction solution genome is
a matrix of girders and their joints. Thanks to the grid
structure with a predefined fixed set of angles (and thus
precomputed cosines and sines in Equations 4 and 5), each
of the joints encodes two linear equations for horizontal and
vertical equilibrium of forces applied to it. Combined with
the constraints of maximal tension (and compression) limit
of each girder as

∀j ∈ J : ∀g ∈ Girders(j) : |f(g)| ≤ limit(g) (7)

we may set up a routine for linear programming to solve the
optimal tension distribution of a stable bridge structure.

Remaining is the distribution of the girders itself, which im-
poses an inherently non-convex character on the problem
and is left to the evolutionary strategy. The evolutionary
algorithm then searches the space of particular bridge archi-
tectures, which are being evaluated by the routines of linear
programming for each individual solution genome.

Starting from a random architecture, we let the evolutionary
algorithm converge towards a better architecture using lesser
number of girders while keeping the bridge structure stable.
Utilizing the linear programming routines greatly improves
the convergence of the algorithm and this is where the merit
of integration with Matlab becomes apparent. Utilizing Mat-
lab within the custom fitness block, we have access to the
powerful built-in linear programming functions and other
features of the environment developed for variety of engin-
eering domains. Again, we provide illustration of the results
achieved with VisualEA in Figures 10 and 11 for brief illus-
tration.
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Figure 8: A small PECS problem solved with
VisualEA on instance of 7 circles

Figure 9: A bigger PECS problem solved with
VisualEA on instance of 23 circles

Figure 10: A small bridge construction evolved
with VisualEA

Figure 11: A bigger bridge construction evolved
with VisualEA

6. RELATED WORK
From the most closely related works, there was an Evolu-
tionary Algorithm Composer project [13] where some vari-
ants of evolutionary algorithms were possible to be created
in a diagrammatic way to free users from programming the
standard routines. This custom tool translated the graph-
ical input into a Java program that might be run normally.
While similarly to VisualEA this tool provides means for
graphical design of some evolutionary algorithm routines, it
differs in the paradigm of modeling evolutionary optimizers
as dynamic systems, which provides us with further features
of real-time simulation. An important distinction is also that
in contrast to being a custom Java tool, VisualEA builds on
an existing data-flow interface of Matlab-Simulink, which
makes it easy to integrate with arbitrary problems and sys-
tems complying to the respective environment.

A Matlab-Simulink based approach utilizing evolutionary al-
gorithms, directed more closely towards system simulation
and modeling, was introduced in [16]. In their work the au-
thors target the problem of parameter and structure optim-
ization of Simulink models that may represent various dy-
namic systems to be optimized. The optimization method is
based on a predefined system entity structure/model frame-
work. While interesting for bringing the structural evolu-
tionary optimization into the model management in Sim-
ulink, the work principally differs from our approach as the
evolutionary computation itself is not a part of the con-
sidered model and is used purely as a preprogrammed black-
box optimization technique.

The wider body of related work naturally comprises of ap-
proaches combining visual paradigms and evolutionary or
genetic algorithms. In the work [6], the authors focused on
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using visualization technology to guide users in validating
their evolutionary solutions. The authors review existing
techniques for presenting evolutionary optimization output
data and introduce dimension reduction techniques for visu-
alizing the search space in a format that is easy to under-
stand. While they also strive to bring more light into the
evolutionary computation, they focus purely on the output
solutions through the population matrix visualization and
not the evolutionary process itself. In a similarly directed
work [34] the authors analyze techniques for visualization of
the genome within population. Applying different aggrega-
tions and statistical methods they try to investigate the de-
tails of the evolutionary run through the genome analysis,
reaching beyond the standard pure fitness progress visualiz-
ation. Another paper [26] presents a set of standard visual-
ization techniques for different data types and time frames
of the evolutionary algorithm, according to their usefulness
for real world applications. To gain the visual insights, the
authors developed a graphical user interface to access the
different visualization methods and styles during and after
an optimization, which became a part of the Genetic and
Evolutionary Algorithm Toolbox for Matlab [5]. While close
in either the visualization spirit or the used technology, the
distinguishing feature of our approach to all the previous
works is the graphical dynamic system modeling approach
to evolutionary optimization.

7. CONCLUSIONS
In this paper, we proved conceptual validity of understand-
ing and modeling evolutionary algorithms as discrete dy-
namic systems and demonstrated potential benefits of such
an approach. We have introduced a new data-flow frame-
work for visual understanding and graphical programming of
optimizers from the evolutionary computation family under
the paradigm of dynamic system modeling. We presented
the standard evolutionary routine within the formalism of
dynamic systems and by those means introduced it into the
Matlab-Simulink environment. The concept of graphical dy-
namic system modeling of evolutionary optimizers was then
embodied within a Simulink library, which allows to create
fully executable models of various optimizers following the
given data-flow architecture. We demonstrated the visual
comprehensibility and flexibility of the concept on several
models, and outlined some interesting features of the frame-
work. Finally, we validated the potential of the library on
selected optimization benchmarks.
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ABSTRACT
In data storage systems, drive arrays known as RAIDs are
often used in order to avoid data loss and to maintain avail-
ability in the event of drive failure(s). RAID schemes define
various drive array organizations (denoted as RAID levels)
that can be used in arrays of hard disk drives (HDDs) and
arrays of NAND flash memory solid-state drives (SSDs). For
larger drive arrays, using data striping with erasure coding
is appealing due to its notably higher space efficiency com-
pared to data replication. However, the main issue of data
striping with erasure coding is the performance of random
writes smaller than a stripe. This problem is even aggra-
vated if the random access performance characteristics of
the deployed device type (HDD or SSD) and device model
are not properly considered when choosing the data striping
configuration (in particular the stripe unit size).

In this article, we provide an analytical model allowing to
predict the random write throughput of homogeneous drive
arrays as well as of a heterogeneous drive array with code
blocks stored on the faster drives. Based on our model, we
develop a method to improve the random write throughput
in homogeneous drive arrays (comprising only one device
type, e.g., HDDs or SSDs) by adapting the data striping
configuration to the used device type and model in relation
to the workload. Then, based on our previous work, we de-
scribe an organization for heterogeneous drive arrays, which
is especially suitable for arrays combining HDDs with SSDs,
and permits to further increase the random write through-
put by storing data blocks on slower and code blocks on
faster drives. Finally, we experimentally evaluate our ana-
lytical claims and show that random write throughput can
indeed be notably increased in drive arrays that use data
striping with erasure coding.

CCS Concepts
•Information systems→ Flash memory; Disk arrays;
RAID; Storage virtualization;

Copyright is held by the authors. This work is based on an earlier work: SAC’15
Proceedings of the 2015 ACM Symposium on Applied Computing, Copyright
2015 ACM 978-1-4503-3196-8. http://dx.doi.org/10.1145/2695664.2695696

Keywords
Heterogeneous data storage systems, Hard Disk Drives,
Solid-State Drives, Data Striping, Erasure coding, RAID

1. INTRODUCTION
In data storage systems, using RAIDs is a common approach
to increase performance (compared to a single drive) and re-
liability (to avoid data loss and to maintain data availability
in case of drive failures) at the same time. From the various
RAID levels known and applied in practice, those combin-
ing data striping with erasure encoding (e.g., RAID-5 and
RAID-6) are appealing to reach fault tolerance especially for
drive arrays comprising many drives, because they exhibit
a notably higher space efficiency than RAID levels applying
data replication (e.g., RAID-1 and RAID-10). However, the
Achilles heel of data striping with erasure coding is the per-
formance of random writes that are smaller than a stripe.
This so-called small write penalty [4, Sect. 4.1] stems from
the additional requests necessary to re-compute the erasure
code(s) and update the accompanying code blocks for every
write request. While this effect is in principle inevitable, in
practice, the potential write performance of erasure-coded
drive arrays often cannot be fully exploited, because the
random access characteristics of the deployed device type
(HDD or SSD) and its model-specific parameters are not
properly considered when choosing the data striping config-
uration and, in particular, the stripe unit size.

This motivated us to develop a method to adapt the data
striping configuration for homogeneous drive arrays to the
used device type (i.e., HDD or SSD) as well as to the char-
acteristic parameters of the used device model while con-
sidering the workload. In case of HDDs, this requires the
knowledge of two parameters (the average head positioning
time and the data transfer rate), while in case of SSDs, it
suffices to obtain the effective flash page size. In case of
HDDs, our method increases the random write throughput
when the majority of requests does not exceed a certain re-
quest size threshold, which depends on the used HDD model
as well as on the number of HDDs and erasure codes applied.
In case of SSDs, such a restriction does not exist. The pro-
posed method is based on an analytical model to forecast
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the random write throughput of homogeneous HDD arrays
and homogeneous SSD arrays that apply data striping to-
gether with erasure coding for an arbitrary number of era-
sure codes. This model can be used to tune the stripe unit
size to the devices’ characteristics in order to maximize the
random write performance.

Then, we apply the developed model to a specific organi-
zation for heterogeneous drive arrays consisting of HDDs
and SSDs, which we have proposed in a previous paper [12].
This drive array organization increases the random write
performance by storing data blocks on HDDs, while code
blocks are stored on SSDs. This scheme is motivated by
the fact that code blocks are much more frequently accessed
than data blocks if small random writes comprise a substan-
tial part of the workload. This raises the possibility for an
optimization by storing the code blocks on the faster drives
effectively offloading the code block requests from the slower
drives. Since the code blocks only require a fraction of the
capacity required for storing the data blocks, the limited
capacity of the faster drives is, thus, exploited more effi-
ciently. We call this approach Code Block Request Offloading
(CBRO). Based on our new results for homogeneous drive
arrays, we present an updated analysis of CBRO and find
that CBRO is also suitable for notably larger requests.

We present a detailed experimental evaluation using Linux
Software RAID that confirms our analyses and supports our
claims on a significant improvement of the random write
throughput in homogeneous HDD RAIDs and SSD RAIDs
as well as in heterogeneous drive arrays applying CBRO.

The remainder of the article is structured as follows: In
Sect. 2 we provide information on the different random ac-
cess performance characteristics of HDDs and SSDs (based
on NAND flash memory). Sect. 3 explains the random
write penalty of erasure coding-based schemes and provides
a model to predict the random write throughput in homoge-
neous drive arrays. Sect. 4 presents a method to improve the
random write throughput in homogeneous (erasure-coded)
drive arrays by taking the device type and model into ac-
count. Sect. 5 describes our approach to alleviate the ran-
dom write penalty in heterogeneous drive arrays. In Sect. 6,
we present an experimental evaluation based on drive arrays
comprising HDDs and/or SSDs using Linux Software RAID,
showing the benefits of our approach. Related work is dis-
cussed in Sect. 7. Finally, Sect. 8 concludes the article and
derives further research directions.

2. STORAGE DEVICE PERFORMANCE
In this section, we examine the key factors that lead to fun-
damentally different random access performance character-
istics of NAND flash-based SSDs when compared to HDDs.

2.1 Hard Disk Drives (HDDs)
The service time of a data request issued to an HDD corre-
sponds primarily to the sum of the command overhead (time
that drive electronics needs to handle a request), seek time
(time to position the head stack over the desired track), ro-
tational latency (time to wait until the start of the desired
sector reaches the read/write head), and data transfer time
(which depends on the media data rate and the host interface

data rate) (cf. [10, Sect. 19.1]). The value ranges and espe-
cially the maximum value of these service time components
are specific to the particular HDD model. HDDs process
data requests consecutively [23] even if multiple outstand-
ing requests are available at a time. However, if multiple
requests occur simultaneously, the seek time and rotational
latency of a request can be reduced (compared to serving
the requests in the order of their arrival) through request
reordering [24]. For the sake of brevity, we denote the sum
of command overhead, seek time, and rotational latency of
a data request as head positioning time in the following.

In general, HDDs achieve the higher performance (i.e., higher
throughput and lower latency) the lower the head position-
ing time of the data requests is. However, for random ac-
cesses, a significant head positioning time (whose value de-
pends on the used HDD model) will occur for each request,
thus, limiting the achievable Input/Output Operations Per
Second (IOPS) and also imposing a lower bound on the la-
tency. As a result, the latency as well as the amount of data
transferable per unit of time depends primarily on the re-
quest size (for random accesses). Small (random) requests
will result in low amount of data transferred per unit of
time (and high latency), hence, representing the least effi-
cient operating mode for HDDs. Consequently, the random
access throughput in terms of mebibytes per second (MiB/s)
increases with growing request size, until it converges to the
media data rate (which depends on the used HDD model and
is usually notably lower than the host interface data rate).
In contrast to that, the throughput in term of IOPS remains
nearly constant with growing request size, then it starts to
decline, and finally it declines linearly. This is because the
head positioning time dominates the time required to serve
small requests, while the media data rate dominates the time
needed to serve large request (cf. Fig. 5 in Sect. 6.2.1).

2.2 NAND Flash Memory SSDs
Contrary to HDDs, SSDs based on NAND flash memory
have no mechanical components because they use semicon-
ductor memory to store data. Another significant difference
between HDDs and SSDs (based on NAND flash memory)
is the inherent capability of SSDs to process multiple data
requests in parallel. This capability results from the in-
ternal architecture of SSDs. Considering the system-level
(hardware) architecture of SSDs, an SSD usually accommo-
dates multiple NAND flash memory packages connected to
the SSD controller through multiple independent channels
(i.e., buses). At flash-level, each package comprises multiple
dies composed of several planes (often two planes per die)
that can be accessed simultaneously. Each plane comprises
usually several thousands of flash blocks, which consist of a
certain number of flash pages (a page is the read/write unit)
with a net capacity of a number of kibibytes (KiB), which
is usually a power of two (e.g., 2, 4, 8, or 16 KiB). Similarly
to the capacity of a single flash page, a flash block contains
usually a number of flash pages that is either a power of two
(often 64, 128 or 256) or a sum of powers of two (e.g., 192 or
384). The flash page size as well as the number of pages per
block often depend on the used flash medium type distin-
guished by the number of bits stored per cell (SLC: 1 bit per
cell, MLC: 2 bits, TLC: 3 bits, and QLC: 4 bits). The used

APPLIED COMPUTING REVIEW  DEC. 2015,  VOL. 15,  NO. 4 32



flash medium type (along with the flash cell size) has a signif-
icant influence on the time needed to read or write (known as
programming) a flash page, hence, also on the performance
of an SSD. Which flash medium type is used depends on
the considered SSD model just like the degree of hardware
redundancy resulting from a particular system-level (num-
ber of independent channels and NAND flash packages) and
flash-level hardware architecture (number of dies, planes,
pages per flash block, and page size).

Beside model-specific architectural properties, the perfor-
mance of SSDs is strongly influenced by two special prop-
erties of NAND flash memory: memory cells have to be
erased in large numbers simultaneously (since flash blocks
are the erase unit) before writing (known as programming)
and the number of program/erase (P/E) cycles is limited
to several thousands (depending on the size of the cell, flash
medium type, and the programming algorithm). As a result,
flash pages are updated out-of-place and the limited write
endurance of memory cells is addressed by a wear leveling
mechanism, which strives to balance erase operations over
all blocks. However, out-of-place updates demand decou-
pling the physical address of a page from its logical address
through a (logical to physical) address mapping policy and
also require a garbage collection (GC) mechanism that re-
claims the space occupied by outdated pages.

Both mechanisms impact the performance: the applied ad-
dress mapping policy determines the physical data layout
(depending on previous writes) that affects the degree of
internal parallelism of data accesses (and, hence, the over-
all performance) (cf. [2, 13]). The GC relocates pages with
valid data before block erasure (which also occupies hard-
ware resources of an SSD), incurring additional page reads
and writes (known as write amplification (WA)) besides the
reads and writes issued to an SSD by the host. The WA
must be kept low to provide high write performance and
prolong the NAND flash memory life time. One effective
approach is to guarantee a substantial amount of free flash
pages at any time by over-provisioning (OP) [7, 11], hence,
sacrificing usable storage capacity. Moreover, the address
mapping policy also influences the overhead of GC because
it affects the internal fragmentation [1] of flash blocks.

In principle, SSDs achieve the higher performance the more
page reads/writes (and also block erasures) can be performed
concurrently. Due to this, SSD designers usually strive to
spread page reads and writes over the available hardware re-
sources by employing an address mapping policy similar to
data striping in order to balance the utilization of hardware
resources as equally as possible. However, the main dif-
ference between data striping and address mapping policies
used by SSDs is that (in contrast to static mapping in data
striping as used in RAIDs) a logical block can be (dynami-
cally) mapped to any flash page within a hardware resource
like a plane or a die [2]. While such dynamical address map-
ping policy permits to consider the utilization of hardware
resources in the event of a write by scheduling a page write
to a less busy hardware resource [13], this is not possible for
reads (without having multiple copies of the data) since the
location of the data is determined by previous writes (i.e.,
the workload history [11]). However, in case of writes, the
number of simultaneously programmable flash pages is po-

tentially lower than the number of available planes due to
power constraints [14, Sect. 7.2] (which are more restrictive
for disk form factor SSDs compared to PCI Express SSDs) or
due to insufficient channel bandwidth (making impossible to
transfer enough data to keep all usable planes busy). Con-
sequently, such limitations will restrict the maximum write
throughput independently of the request size.

Crucial for the random access throughput of an SSD is that
it is insensitive to the request size if enough concurrent
whole-page read/write requests are available to keep all hard-
ware resources busy and if the utilization of hardware re-
sources is equally balanced as possible. In this case, an SSD
can achieve the same random access throughput in face of
a (sufficiently) large number of simultaneously issued sin-
gle page requests as for a smaller number of requests, each
affecting a correspondingly larger number of pages.

In practice, the number of concurrent page read/write re-
quests available at a time is potentially limited by the max-
imum queue depth supported by the host interface (e.g.,
NVM Express, SAS, SATA). This limitation occurs if the
maximum queue depth is smaller than the number of pages
that can be simultaneously read and/or written. In case of
writes, this effect can be mitigated by using write buffering
(doing so, completion is signaled to the host as soon as the
data was transferred to SSD’s DRAM buffer, which frees a
queue slot for a new request). As a result, if an SSD em-
ploys write buffering, its throughput for random writes can
surpass that of random reads (albeit reading a NAND flash
page takes notably less time than programming it).

Read and write requests issued to an SSD can result in sub-
page reads and writes, i.e., reading or writing less data than
a flash page comprises. The performance impact of random
sub-page accesses differs significantly for reads and writes.
In case of random reads, this will result in a lower through-
put (compared to whole-page reads), because the whole flash
page has to be read from NAND flash memory despite of the
fact that only a fraction of its data amount was requested.
In case of random writes, the throughput of a random sub-
page write depends on whether the referenced flash page al-
ready contains valid data or not. If the page contains valid
data, it has to be read first (in whole). Then, the (updated)
data is written to a another (free) flash page. Thus, random
sub-page overwrites will yield lower throughput compared
to random sub-page writes not referencing a page with valid
data (which can be slightly faster than writing a whole page
due to lower amount of data to transfer). Moreover, since
even sub-page random writes not referencing a page with
valid data occupy the capacity of a whole flash page, they
reduce the effective degree of OP and the SSD life time com-
pared to whole-page random writes.

3. STRIPING WITH ERASURE CODING
To counter the risk of data loss and to maintain availabil-
ity in the event of drive failures, drive array organization
schemes, especially RAID, employ redundancy. Primarily,
two techniques are used: erasure coding, which adds infor-
mation allowing the reconstruction of data in case of drive
failures, and replication (also known as data mirroring),
which stores multiple copies of the data on different drives.
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Figure 1: Illustration of partial stripe writes and a
full stripe write (FSW). For partial stripe writes,
two code block update methods exist: a reconstruct
write (RCW) and a read-modify-write (RMW).

For larger drive arrays, erasure coding provides a much bet-
ter space efficiency than replication. Erasure coding is usu-
ally combined with data striping such that each stripe com-
prises multiple data blocks (i.e., stripe units that accommo-
date data) and at least one code block (i.e., stripe unit that
contains erasure code for that stripe). However, the main
drawback of data striping with erasure coding is a high over-
head for small writes (known as small write penalty), which
is especially pronounced for random writes. Due to this, we
devote particular attention to the random write performance
and, in particular, to the random write throughput.

3.1 Random Write Penalty
When data striping is combined with erasure coding, updat-
ing the content of any number of data blocks within a stripe
requires re-computing all erasure codes and, thus, also up-
dating the stripe’s code blocks. Depending on the starting
address and the request size of a logical write (i.e., a write to
a drive array) as well as on the data striping configuration
(i.e., stripe width, which refers to the number of data/code
blocks per stripe, and the stripe unit size), a logical write
potentially incurs also physical read requests (cf. [3]).

As shown in Fig. 1, a logical write can affect either a part
of the data blocks within a stripe (denoted as partial stripe
write) or all of them (referred to as full stripe write (FSW)).
In case of a partial stripe write, two code block update meth-
ods exist: either all remaining data blocks of the respective
stripe are read for erasure code computation, which is re-
ferred to as reconstruct write (RCW), or the old versions of
the data blocks to be written and the code blocks are read,
which is known as read-modify-write (RMW) (cf. [28]). In
both cases, new versions of the respective data blocks and
the code blocks are written subsequently. For independent
random writes, it is very likely that neither the needed data
block(s) nor the code block(s) are cached. Thus, for the sake
of efficiency, the code block update method that requires less
reads is preferable. In case of a full stripe write, the code
blocks can simply be calculated from the new version of the
data blocks to be written and, thus, no reads are required.

In the following, we assume that each stripe contains (n −
k) ≥ 2 data blocks and k ≥ 1 code blocks which are spread

over n different drives (resulting in a stripe width of n).
When updating d ≥ 1 data blocks of the stripe, RMW re-
quires to read the old versions of d+k data and code blocks,
respectively, while RCW reads the n− k− d remaining data
blocks. Thus, RMW is superior to RCW if d+k < n−k−d
which implies

d <
n− 2k

2
(1)

and that the disk array contains at least n > 2k+2 drives for
RMW to be used at all. Besides the overhead of reading old
or additional blocks, respectively, modified and new blocks
need also to be written. Thus, in case of RMW, updating
d data blocks causes 2 · (d + k) read and write requests al-
together. The disproportion between the number of logical
write requests issued and the number of implied physical
(read and write) requests is called small write penalty as it
is most pronounced for logical write requests that comprise
only a single data block.

Usually, each stripe contains more data blocks than code
blocks, but since writing any of the former requires a com-
plete update of the latter, the update frequency of code
blocks is usually significantly higher than for any individual
data block and it reaches the maximum if only a single data
block is written at a time. As a consequence, drives solely
responsible for storing code blocks would experience a higher
load in terms of read/write requests. In order to avoid these
drives becoming bottlenecks, code blocks are usually spread,
similar to data blocks, over available drives in a round robin
manner leading to a better load distribution. For homoge-
neous drive arrays, this is the primary reason why RAID
schemes with distributed code blocks such as RAID-5 and
RAID-6 are preferred over RAID-4 that uses a dedicated
drive for storing code blocks (and is not used in practice
anymore). However, when considering heterogeneous stor-
age devices with significantly different performance charac-
teristics, this changes fundamentally. In this case, it is de-
sirable to foster non-uniform load distributions that utilize
each drive proportional to its speed in order to exploit the
potential of faster storage technologies.

3.2 Random Write Throughput
Besides the influence of the used device type and model, the
random write throughput of a drive array using data striping
with erasure coding essentially depends on the striping con-
figuration and the workload characteristics. In order to ana-
lyze their impact, we quantify the random write throughput
of a drive array in relation to the random access through-
put of a single drive. In particular, we are interested in
the speedup achieved by the drive array with respect to its
configuration and workload.

Therefore, we still assume that each stripe contains k code
blocks and n−k data blocks of the same size (i.e., stripe unit
size) that are spread to n different drives. Then, a logical
random write (to the drive array) may affect 1 ≤ d ≤ n− k
logically adjacent data blocks of a stripe. Depending on
the request size and the alignment of the starting address,
a logical random write may also affect multiple stripes and
cover at most two data blocks of a stripe only partially, i.e.,
the blocks at the begin and end, respectively. However, in
the following analysis, we neglect the case that data blocks
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are covered only partially and assume that a logical random
write affects d complete data blocks within a stripe.

Let λ
rr

and λ
rw

be the average random read throughput
and the average random write throughput of a single disk, re-
spectively, that is measured in blocks. Thus, the disk needs
r/λ

rr
to randomly read r blocks and w/λ

rw
to randomly

write w blocks which results in a combined throughput of
(r/λ

rr
+ w/λ

rw
)−1 complex operations consisting of r + w

consecutive random reads and writes. Consequently, an ar-
ray with n drives yields the n-fold throughput of

λ
rw
Array(d, n) = n ·

(
r

λ
rr +

w

λ
rw

)−1

, (2)

where we can interpret r and w as the actual overall number
of code and data blocks to physically read and write, respec-
tively, when logically writing d data blocks in a stripe.

The speedup of the drive array compared to a single drive
corresponds to the ratio between the array’s throughput and
the drive’s throughput λ

rw
/d for also writing d data blocks

randomly. Hence, the speedup is

S(d, n) =
λ

rw
Array(d, n)

λ
rw
/d

=
d · n

α · r + w
, (3)

where α = λ
rw
/λ

rr
is the hardware-dependent ratio be-

tween the average random write and the average random
read throughput specific to the storage type and model used
(e.g., HDDs or SSDs based on NAND flash memory). Based
on the derived formula above, we can specify the speedup for
all three variants of code block updates. For each code block
update method, we have to insert the respective number of
blocks that are caused to be physically read and written.

Read-Modify-Write. An RMW of 1 ≤ d < n−2k
2

data
blocks has to read the old versions of the affected data blocks
together with all code blocks first. This are r = d+ k reads
altogether. Thereafter, the new versions of these blocks have
to be written which results in w = d+ k writes. Hence, for
RMW, we get a speedup of

SRMW(d, n, k) =
d · n

α · (d+ k) + (d+ k)
. (4)

Reconstruct Write. In case of an RCW of n−2·k
2
≤ d <

n − k data blocks, the other remaining data blocks of the
stripe are read which makes r = n−k−d reads. Thereafter,
the new data blocks together with the newly computed code
blocks are written which results in w = d+ k overall writes.
Thus, for RCW, the speedup is

SRCW(d, n, k) =
d · n

α · (n− k − d) + (d+ k)
. (5)

Full Stripe Write. An FSW results in writing all d = n−k
data blocks of a stripe together with k new code blocks. It
is not necessary to read any old block, i.e., r = 0. Hence,
for FSW, the speedup is

SFSW(d, n, k) =
d · n

0 + d+ k
=
d · n
n

= d. (6)

Please note that we can also derive the speedup SFSW of
FSW by inserting d = n − k into Eq. 5, the formula of the
RCW speedup. This shows that FSW is a special case of a
reconstruct write that requires no reads for reconstructing
the code blocks as they can be computed completely from
the data blocks to be written.

When further analyzing the speedup of different code block
update methods, it is, thus, sufficient to only use Eqs. 4
and 5 for RMW and RCW, respectively, since RCW already
includes FSWs for d = n−k. By comparing both equations,
we see that the speedup of RMW is higher than that of
RCW if

d · n
α · (d+ k) + (d+ k)

>
d · n

α · (n− k − d) + (d+ k)
. (7)

We can solve the above inequality for d, which gives

d <
n− 2k

2
. (8)

There are two things to notice. First, the criterion does
not depend on α and, thus, is independent of the storage
technology used. Second, this is exactly the condition under
which RMW requires to read less blocks than RCW when d
data blocks of a stripe are logically written. As additional
reads for computing erasure codes belong to the drive ar-
ray’s overhead when compared to the actual number of data
blocks physically written, it is clear that reducing this over-
head maximizes the speedup. Hence, for d ≥ n−2k

2
, RCW

starts to outperform RMW and its speedup grows further
with increasing d. It reaches the maximum for d = n − k
(as d is maximal for the striping configuration) which corre-
sponds to a FSW requiring no additional reads at all.

Based on the derived formulas above, we can now calculate
the speedup for random write requests that is achieved by
a drive array when its striping configuration is known, i.e.,
number of drives and erasure codes. But conversely, it is
still unclear which striping configuration is best suited for
which request characteristics (e.g., request size) and how this
decision depends on the particular device type and model.

4. DEVICE-AWARE DATA STRIPING
In this section, we analyze the impact of different device
types and their inherent characteristics on the performance
of a drive array using data striping with erasure coding. It
is necessary to precisely understand and quantify the array’s
behavior as it may differ fundamentally for various storage
technologies. Based on this analysis, we give recommenda-
tions how to set up the striping configuration for optimal
performance. In the following, we focus on homogeneous
drive arrays consisting of either HDDs or SSDs (based on
NAND flash memory) and analyze these arrays with regard
to the random write throughput.

4.1 Hard Disk Drives
Conventional HDDs exhibit a largely symmetric read and
write performance. Basically, without cache effects, data is
read as fast as it is written. This is because relevant per-
formance parameters of an HDD (i.e., command overhead,
rotational speed, average media data rate, and host interface
data rate) are independent of the data direction, however,
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with the exception of a negligibly higher average seek time
for writes compared to reads [10, Sect. 23.2.4]. Neverthe-
less, we can safely assume that the ratio α of the average
random write throughput λ

rw
and the average random read

throughput λ
rr

is 1 for any given request size. This simpli-
fies Eqs. 4 and 5 to

SHDD,RMW(d, n, k) =
d · n

d+ k + d+ k
=

d · n
2 · (d+ k)

, (9)

SHDD,RCW(d, n, k) =
d · n

n− k − d+ d+ k
= d. (10)

Please note that the speedup SHDD,RCW of RCW corre-
sponds to the number of data blocks d that are written when
updating the stripe. This is caused by distributing the data
blocks to different drives while all other remaining drives
are also utilized by a similar amount of work, i.e., by either
writing a code block or by reading one of the other data
blocks that are still missing to calculate the erasure codes.
Furthermore, when comparing Eqs. 6 and 10, the kinship
of RCW and FSW becomes apparent. The highest speedup
possible is achieved for a maximum number d = n − k of
data blocks written in a stripe, i.e., for an FSW.

The reference unit for the speedup calculations is the size
of a single data/code block in a stripe, i.e., the stripe unit
size. Thus, if a logical random write request should affect
more data blocks of a stripe, the request must be larger or,
conversely, the size of the data blocks has to be smaller.
However, comparing speedup values for different block sizes
directly with each other is problematic. It is only feasible if
the request size by which the data is physically read from
or written to disk has no influence on the throughput of a
drive. Unfortunately, for HDDs, this is not the case.

The average time, an HDD needs for serving a random read
or random write request, is basically the sum of two terms:
the first term corresponds to the average time tpos required
to position the read/write head above the correct disk sector.
Hence, by tpos, we subsume command overhead, seek time,
rotational latency etc. (cf. Sect. 2.1 for details). Thereafter,
the disk can start to consecutively read or write the data.
The second term corresponds to the time needed to finish
the read or write operation. Obviously, this time depends
on the amount x of data to read or write as well as on
the average data transfer rate R which is limited by the
media data rate, host interface data rate etc. (cf. Sect. 2.1
for details). The disk’s throughput is then given by the
product of request size x and the reciprocal of the average
service time for performing the request:

λ
rr
HDD(x) = λ

rw
HDD(x) = x ·

(
tpos +

x

R

)−1

. (11)

For small requests, the service time is dominated by the po-
sitioning time of the read/write head. When neglecting the
transfer time and, thus, approximating the disk’s through-
put by x · (tpos)−1, its linear dependence to the request size
becomes apparent. With growing request size x, the disk’s
throughput grows proportionally. For larger requests, how-
ever, the transfer time cannot be neglected anymore and,
from Eq. 11, we see that the throughput asymptotically ap-
proaches its maximum which is limited by the disk’s trans-
fer rate R. The average positioning time tpos and the data

transfer rate R are specific to a particular HDD model. Both
parameters can be reliably measured in experiments with a
sufficient accuracy (cf. Sect. 6.2.1 for details).

Together with the speedup formulas for RMW (Eq. 9), RCW
(Eq. 10), and FSW (Eq. 6), we can now predict the perfor-
mance of a drive array with n disks and k erasure codes,
when a logical random write request of size s is split in d
data blocks on different drives. By multiplying the speedup
value for the respective code block update pattern with the
throughput of a single drive for requests of size x = s/d, the
predicted throughput of the drive array is given by

λ
rw
HDD(d, n, k, s) =


d·n

2·(d+k) · λ
rw
HDD

(
s
d

)
if d < n−2·k

2
,

d · λ rw
HDD

(
s
d

)
otherwise.

(12)

This way, we can analyze the throughput gained by the drive
array when using the different code block update methods
and, hence, find out the optimal number dopt of data blocks
into which the logical random write request has to be split
in order to achieve the best performance. To better under-
stand these implications and, thus, the behavior of the drive
array, we distinguish three cases for comparing random write
requests to each other. Each case corresponds to a possible
combination of code block update patterns.

RMW. Two logical random write requests of the same size s
that cause d1 < d2 and d2 <

n−2·k
2

physical data blocks to be
written, respectively, are both carried out with RMW. The
first request achieves a higher throughput than the second
request if

d1 · n
2 · (d1 + k)

· s/d1

tpos + s/d1

R

>
d2 · n

2 · (d2 + k)
· s/d2

tpos + s/d2

R

. (13)

When solving the inequality for s, we get

s <
d1 · d2
k
·
(
R · tpos

)
, (14)

which is interesting since the logical request size s is con-
strained by the product of two terms. The first term d1·d2

k
is

a coefficient specific to the stripe configuration and the num-
bers of data blocks written, while the second term R · tpos
is specific to the particular HDD model. We can conclude
from Ineq. 14 by inserting d1 = 1 and d2 = 2 that, in case of
RMWs, it is better to not split small logical random writes
at all that are smaller than 2·k−1 ·R·tpos. The drive’s ability
to read and write larger data blocks much more efficiently
compensates and even excels the lower speedup when not
writing to more disk’s in parallel. Only, if the logical ran-
dom write requests become larger than d·(d−1)·k−1 ·R·tpos,
it is worthwhile to split the request into d ≥ 2 data blocks
on different disks.

RCW/FSW. For two logical random writes of size s that
both affect d1, d2 ≥ n−2·k

2
data blocks of a stripe, respec-

tively, RCW or FSW is used. As we can use the same for-
mula (cf. Eq. 12) to predict the throughput of both code
block update methods, we do not have to distinguish them
in the following. The first logical random write affecting
d1 physical data blocks has a higher throughput than the
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Figure 2: Analytical average random write through-
put of RMW a/ RCW compared to FSW in an array
of Seagate ST91000640SS HDDs (n=10 and k=1).

second write with d2 blocks if

d1 ·
s/d1

tpos + s/d1

R

> d2 ·
s/d2

tpos + s/d2

R

. (15)

We can simplify the above inequality to

d1 > d2. (16)

Hence, when using RCW, it always pays off to distribute
physical writes to more disks. Moreover, since FSW uses
the maximum number n − k of available data blocks in a
stripe, it is, thus, superior to all other RCW variants for
any given logical request size.

RMW vs. RCW. In the last case, we compare the achiev-
able throughput for logical random write requests of size s
when using RMW and RCW with d1 <

n−2·k
2
≤ d2 data

blocks, respectively. Please note that the latter (i.e., RCW)
also includes FSW if d2 = n−k. RMW has a higher through-
put than RCW if

d1 · n
2 · (d1 + k)

· s/d1

tpos + s/d1

R

> d2 ·
s/d2

tpos + s/d2

R

. (17)

Similar to the previous cases, we can simplify the above
inequality and solve it for s. Although, it takes a little bit
more effort this time, we finally get

s <
d1d2 · (n− 2d1 − 2k)

2d1d2 + 2d2k − d1n
·
(
R · tpos

)
, (18)

which states that it is better to concentrate logical random
writes with a size smaller than the right side of Eq. 18 with
RMW to a few disks in order to write larger physical blocks
more efficiently. By inserting d2 = n−k into Eq. 18, we can
also determine up to which request size RMW is superior
to FSW. The logical request size s, up to which RMW is
preferable to RCW and even FSW, is again determined by a
coefficient, specific to striping configuration and number of
affected data blocks, and by the hardware specific product
of data transfer rate R and average head positioning time
tpos of the given HDD model.
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Figure 3: Analytical average random write through-
put of RMW compared to FSW in an array of Sea-
gate ST91000640SS HDDs (n=16 and k=2).

Leveraging the derived formulas above, we conduct an ex-
emplary analysis of two drive arrays consisting of Seagate
ST91000640SS HDDs. This drive model is also used through-
out the evaluation in Sect. 6. We measured the HDD’s aver-
age head positioning time and average data transfer rate to
be 5 ms and nearly 89, 592 KiB/s, respectively (cf. Sect. 6.2.1
for details). Based on these drive-specific values, Fig. 2
shows the predicted throughput for an array of n = 10 drives
with k = 1 erasure codes, while Fig. 3 plots the predictions
for n = 16 drives with k = 2 erasure codes. For the sake
of clarity, we only present curves for selected values of af-
fected data blocks d and compare the throughput gained by
the implied code block update method to the performance
of FSW for logical random writes of varying request sizes.
Thus, the curves quantify the throughput gains and losses
compared to FSW on the y1-axis (left), while the absolute
throughput of FSW is measured on the y2-axis (right). For
the graphed interval of logical request sizes, the throughput
of FSW grows nearly linearly.

For the smaller drive array, as shown in Fig. 2, RCW is ap-
plied when 4 ≤ d ≤ 8 data blocks of a stripe are affected
by a logical random write. Thus, the curves for d ∈ {4, 8}
determine the lower and upper bound for the throughput
achievable by RCW, respectively. Both are unfavorable for
all logical request sizes when compared to FSW which illus-
trates Eq. 16. Contrarily, all RMW variants (d ∈ {1, 2, 3})
exhibit a larger throughput than FSW for small requests
and, especially, RMW with d = 1 performs best over a wide
range of request sizes. In particular, it is superior to FSW
for logical requests up to a size of 930 KiB which we can
calculate easily by using Eq. 18. Please note that there is a
small interval of request sizes from 896 KiB to 949 KiB, cal-
culated with Eqs. 14 and 18, respectively, for which RMW
with d = 2 performs slightly better than both FSW and
RMW with d = 1. As the throughput gain is not substan-
tial, we may be tempted to neglect this case. However, for
different striping configurations and, especially, more drives,
RMWs with d > 1 become relevant, too. For instance, for
the larger array with 16 drives and 2 erasure codes as shown
in Fig. 3, RMW with d = 2 is the best choice for logical
request sizes between 448 KiB and 1254 KiB.
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Summarizing our analysis, up to a certain logical request
size cfsw, the highest aggregated random write throughput
is achieved in case of RMW and for requests greater than this
size, FSW results in the highest throughput. Depending on
the number of drives and the number of used erasure codes,
the request size interval, where RMW is the best strategy,
is divided in one or more subintervals meaning that in the
first subinterval, RMW affecting only a single data block
is best, in the second subinterval, RMW affecting two data
blocks is best etc. Usually, the number of subintervals is
much lower than n−2k

2
meaning that RMWs affecting more

than a rather low number of data blocks never deliver the
highest throughput. In that case, either an RMW affecting
less data blocks or FSW performs better.

This insight allows to choose the best performing RMW vari-
ant (e.g., RMW affecting a single data block) provided that
almost all logical requests have a size for that a single of
those methods provides the highest random write through-
put. Assuming a fixed stripe width n and a fixed number of
erasure codes k, the number of data blocks affected by an
RMW can only be influenced by the choice of the stripe unit
size u. This means that the stripe unit size should be set
such that as many as possible logical writes will end up in
RMWs writing exactly the desired number of data blocks.

In contrast to this, when (almost) all logical random writes
have a certain request size that is greater than cfsw, the
stripe unit size should be tuned such that logical writes end
up only in FSWs. However, this is only possible if the logical
requests are appropriately aligned to the stripes. The reason
is that the stripe unit size cannot be chosen small enough
(since it is at least bounded below by the sector size) to avoid
that a logical write covers up to two stripes only partially.

For mixed random write workloads, the most favorable fre-
quency distribution of the three code block update methods
depends on the particular request size distribution. In this
case, the choice of the stripe unit size resulting in the highest
aggregated random write throughput is not straightforward.

4.2 NAND Flash Memory SSDs
The random access throughput of an SSD is largely insensi-
tive to the request size (cf. Sect. 2.2) if enough page requests
are available all the time to keep all hardware resources busy.
However, depending on the used SSD model, the maximum
queue depth of the host interface can be too low to keep all
hardware resources busy in face of single-page requests. In
this case, the highest possible random read/write through-
put is potentially only achieved for requests comprising mul-
tiple flash pages. In the following, we assume that the queue
depth is sufficiently high. This is, however, not a severe re-
striction since the AHCI-based SATA interface still widely
used today is assumed to be replaced by the NVMe interface
soon. In contrast to AHCI, which offers a queue depth of
only 32 (which is a limit imposed by SATA [25]), NVM Ex-
press exhibits a queue depth of up to 65, 536 [18]. Another
possibility is to use SSDs with SAS interface, because SAS
offers a queue depth of up to 254 [27].

The insensitivity of the random access throughput of an SSD
to the request size, however, only exists for requests whose
size is an integral multiple of the flash page size. Especially

random write requests that are smaller than a flash page,
will result in a throughput reduction that is proportional to
the ratio between the request size and the flash page size
p. It is, thus, important to minimize the number of sub-
page random write requests. Moreover, the requests issued
to an SSD should be aligned to page boundaries, because a
request with a size of a page that is not page-aligned leads to
two sub-page requests resulting in two SSD internal RMW
operations. Larger non-aligned requests with a size of a
sectors per page, lead to ba·512 bytes

p
c complete flash pages

written and two sub-page writes (to the first and the last
page affected by the write). This means that the larger
the request is, the smaller the penalty of non-aligned write
requests becomes.

For SSD arrays using data striping with erasure coding, the
insensitivity of random access throughput to the physical
request size can be exploited to increase the aggregated ran-
dom write throughput. Assuming a (nearly) constant ran-
dom write throughput per SSD, the resulting aggregated
random write throughput of an SSD array is directly propor-
tional to the speedup of the used code block update method.
We already showed in Sect. 3.2 that the speedup of FSW is
the highest, followed by RCW and, then, RMW. Therefore,
random writes comprising multiple flash pages should be dis-
tributed over several SSDs. Ideally, a random write should
cover all (n− k) data blocks of a stripe resulting in an FSW
(and making reads unnecessary) rather than in an RCW or
even an RMW leading to a lower throughput because of the
required reads. This suggests to set the stripe size and, thus,
the stripe unit size as small as possible to increase the chance
of getting more FSWs.

However, because the physical writes to the individual SSDs
should not become smaller than a flash page to avoid sub-
page writes, the stripe unit size should not be set to a value
smaller than the flash page size. This also avoids that log-
ical random writes with a request size below the flash page
size would be split in even smaller parts written to multi-
ple stripe units heavily affecting performance and SSD en-
durance. Due to a similar reason, the stripe unit size should
be set to an integral multiple of the flash page size implying
a stripe size that is an integral multiple of (n−k) ·p. In that
case, logical writes whose size is an integral multiple of the
stripe size and that are stripe-aligned will result solely in
FSWs, while those that are not stripe-aligned or whose size
is only an integral multiple of the flash page size, will result
in a number of FSWs and in two partial stripe writes (for the
first stripe and the last stripe affected by the write, respec-
tively) that are either an RMW or an RCW. Moreover, each
of the two partial writes causes one sub-page write if the
request is not aligned to page boundaries. Again, the larger
the logical request is, the smaller the effect of the disadvan-
tageous partial writes and the sub-page writes become.

Summarizing, we suggest to set the stripe unit size equal
to the flash page size if the vast majority of the requests
are page-aligned. The rationale behind this is that this in-
creases the probability that multi-page random writes will
affect a larger number of data blocks (compared to larger
stripe units) and will more likely end up in an RCW or
FSW instead of an RMW (which also depends on the stripe
width n). The chance of getting page-aligned requests can
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be increased by aligning device partitions and file systems
accordingly [11]. Even better is if requests are aligned to
stripe boundaries and if their size is an integral multiple of
the stripe size. If a larger part of the requests is not page-
aligned, even smaller requests could hit two stripe units re-
quiring two partial stripe writes involving sub-page writes.
In that case, setting the stripe unit size to a small multiple
(e.g., 2-, 4-, or 8-fold) of the flash page size can be bene-
ficial to restrict small and medium-sized requests to hit a
single stripe unit. Choosing the data striping configuration
requires in any case knowing the (effective) flash page size
of the used SSD model. The flash page size can easily be
determined by measuring the latency of random reads [2].

5. CODE BLOCK REQUEST OFFLOADING
In order to leverage the potential of faster storage technolo-
gies in heterogeneous drive arrays, it is sensible to utilize
each drive proportional to its speed. This prevents bottle-
necks and maximizes the throughput. Non-uniform load dis-
tributions that spread the requests to the drives in propor-
tion to their relative performance can be attained by placing
those blocks that are accessed more frequently and/or an ap-
propriately larger fraction of blocks onto faster devices. As
code blocks are updated more frequently than data blocks
(cf. random write penalty in Sect. 3.1), however, it makes
only sense to additionally place data blocks onto faster de-
vices if all code blocks already reside there. Shifting the
code blocks from slower devices to faster ones offloads the
corresponding code block requests, thus, allowing the slower
devices to perform more data block requests in the same time
period, which potentially increases performance. We denote
this approach as Code Block Request Offloading (CBRO).

We now describe a specific drive array organization scheme
that applies CBRO by placing all data blocks on slower de-
vices and all code blocks on faster devices. Please note that
the drive array organization described is not as effective in
case of RCW and FSW as for RMW, because the update
frequency of code blocks decreases in case of RCW and the
code blocks have not to be read at all for FSW. However,
based on our device-aware data striping analysis in the last
section, we strongly recommend tuning the data striping
configuration to foster RMWs for particular workloads and
device types, e.g., small random writes on HDD arrays. This
makes CBRO an ideal addition to those configurations.

5.1 Drive Array Organization
With CBRO, a drive array contains homogeneous data drives
that accommodate data blocks, and one check drive array
(CDA) per erasure code that accommodates all related code
blocks (spreading code blocks belonging to different erasure
codes over CDAs provides no performance benefit since all
code blocks related to a data block must be updated when
writing). Please note that a single device can also fulfill the
role of a CDA, whenever it can provide enough capacity to
store the code blocks and enough performance to serve all
requests issued to these. Besides, CBRO can also be recur-
sively applied to CDAs. An exemplary drive array using
CBRO and two erasure codes P and Q is shown in Fig. 4,
whereby the code blocks related to the erasure codes are ac-
commodated by two striped CDAs each comprising 4 drives.

...

P0

...

P4

P1 P2 P3 Q0
Q4

Q1 Q2 Q3

Check Drive Array QCheck Drive Array Pn Data Drives

... ... ...

... ... ... ...

D0,0
D1,0
D2,0
D3,0
D4,0

D0,1
D1,1
D2,1
D3,1
D4,1 ...

Dk-1,0 Dk-1,1

D0,n-1
D1,n-1

D4,n-1

D2,n-1
D3,n-1

Dk-1,n-1

......

Figure 4: Example drive array using two erasure
codes and CBRO. Stripe i comprises n data blocks
Di,j as well as two code blocks Pi and Qi each stored
in separate (striped) check drive arrays.

5.2 Random Write Performance
As already mentioned, CBRO pays off when used in conjunc-
tion with RMW requests. The performance analysis, thus,
focuses on this code block update variant. With RMW, a
logical random write affecting d (adjacent) complete data
blocks within a stripe causes d+ k physical read and subse-
quent write requests when k erasure codes are used. With
CBRO, k read and write requests are shifted to k different
CDAs leaving d read and write requests to be performed by
d out of n data drives (resulting in an effective stripe width
of n + k). If all CDAs are able to cope with code block
updates from all data drives, the aggregated random write
throughput of CBRO is independent of k. Based on our
speedup formulas in Sect. 3.2, we can determine the result-
ing speedup of CBRO for RMW. With CBRO, only r = d
reads and w = d writes have to be carried out by the data
drives since all requests for code blocks have been offloaded.
Thus, Eq. 3 gives a speedup of

SCBRO,RMW(n) =
d · n
αd+ d

=
n

α+ 1
(19)

when compared to a single data drive. Please note that this
number is also independent of d. Now, we can calculate the
throughput speedup due to CBRO compared to a homoge-
neous drive array by considering the speedup ratio between
SCBRO,RMW and SRMW from Eq. 4 which gives

SCBRO,RMW(n)

SRMW(d, n, k)
=
(

n
α+1

)(
d·n

(α+1)(d+k)

)−1

=
d+ k

d
. (20)

Obviously, the achieved throughput speedup due to CBRO
increases with the number of used erasure codes k (which,
however, also requires more CDAs). For a fixed k, the high-
est throughput speedup due to CBRO is achieved if each
logical random write affects only one data block within a
stripe (i.e., d = 1). As an example, in the case of d = 1,
the aggregated random write throughput of a drive array
using CBRO is 2 times higher than of a RAID-5 setup and
3 times higher compared to a RAID-6 setup. However, for a
fixed k, the throughput speedup due to CBRO will decrease
with growing number of data blocks d affected by a logical
random write. Please note that CBRO has no significant
effect on the random write latency since this value is still
bounded below by the time that a data drive requires for a
single random RMW request [12].
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5.3 Requirements on Check Drive Arrays

Capacity. Each CDA Ai for erasure code i has to provide
a total capacity large enough to store all respective code
blocks. Thus, its total capacity CAi needs to be at least as
large as the used capacity CD of a single data drive:

∀i : CAi ≥ CD (21)

Reliability. A CDA should be at least as reliable as a data
drive to avoid reducing the overall reliability. Hence, the
mean time to failure MTTFAi of CDA Ai needs to be at
least as high as the MTTFD of a data drive:

∀i : MTTFAi ≥ MTTFD (22)

Performance. The performance of each CDA has to be
high enough to avoid becoming a bottleneck. Thus, it has
to provide at least the aggregated RMW throughput of all
data drives together. Let tRMW,Ai(u) and tRMW,D(u) be the
mean service times of a single RMW with the request size u
on the CDA Ai and one of the n (homogeneous) data drives,
respectively, then it must hold:

∀i :
1

tRMW,Ai(u)
≥ n

tRMW,D(u)
(23)

Dependencies. Please note that the requirements above
are not independent. Together, they determine the number
of drives required for each CDA. It is particularly desirable
to keep this number low as faster drives used in a CDA are
usually more expensive. But since faster drives often provide
lower capacities, their number cannot be reduced arbitrarily.
Moreover, ensuring a certain performance level and degree
of reliability in a CDA may require additional drives which
increase the costs again. Hence, not every feasible combina-
tion of (heterogeneous) drives (for CBRO) is economically
sensible. But both, feasibility as well as costs, are primarily
determined by the chosen storage technologies.

5.4 Technological Considerations
In the following, we examine the suitability of different stor-
age device type combinations for CBRO with respect to their
capacity and random access performance characteristics as
well as their reliability.

5.4.1 Capacity and Random Access Performance
HDDs exhibit a notably better (i.e., lower) total storage de-
vice cost per capacity ratio than SSDs (based on NAND
flash memory). In addition to this, the RMW code block
update method results in case of HDDs in the highest ag-
gregated random write throughput for request sizes in the
range of several hundreds of KiBs (depending on the used
HDD model, number of erasure codes and deployed HDDs).
Both, the lower costs and the superiority of RMW for larger
requests, makes HDDs an ideal candidate to serve as data
drives in a drive array using CBRO. However, the random
access throughput difference between the slowest and fastest

Table 1: Typical page sizes of NAND flash media.

Flash Medium Flash Page Size

SLC [8, 15] 2 or 4 KiB
MLC [9, 16] 4 or 8 KiB
TLC [21, 29] 8 KiB

available model amounts less than a half of an order of mag-
nitude. The following example illustrates the differences be-
tween the average data transfer rates provided by fast and
slow HDD models: one of the fastest enterprise-class HDDs,
the HGST HUS156060VLS600, delivers a data transfer rate
of up to 198 MB/s [5], while even desktop HDDs (which cost
notably less and target a completely different usage scenario)
can provide data transfer rates of up to 100 MB/s. More-
over, also optimizations like short-stroking cannot provide
a substantial improvement of the random access through-
put [6]. As a consequence, even using the slowest HDDs as
data drives and the fastest HDDs in CDAs is not appealing
due to the demand for a high number of HDDs in each CDA
(which potentially requires using erasure coding).

SSDs based on NAND flash memory are capable of providing
a considerably higher RMW throughput than HDDs, espe-
cially for small requests [12], which makes them suitable for
CDAs in combination with HDDs as data drives. However,
the random access performance of SSDs depends strongly
on the used flash medium type as well as on their system-
level and flash-level architecture (cf. Sect. 2.2). In case of
larger requests, the used host interface as well as the form
factor of an SSD have strong impact on the achievable RMW
throughput. Especially disk form factor SSDs with a disk
host interface like SATA or SAS, potentially provide less
than a half of an order of magnitude higher RMW through-
put for larger requests than HDDs. As a consequence, a
larger number of SSDs has to be deployed per CDA in order
to meet the requirements on performance, which is poten-
tially exacerbated when additional SSDs are necessary to
also meet reliability demands.

Using SSDs as data drives is only beneficial for small re-
quests, i.e., with a request size corresponding to the size of
a few flash pages and depending on the number of drives,
because for larger requests RMW will yield lower aggregated
random write throughput than RCW and FSW (cf. Sect. 4.2).
Thus, the usage of SSDs as data drives is only applicable for
a smaller range of applications. However, the page size of
SSDs (and usually also the per device capacity) depends
significantly on the used flash medium type. SSDs based on
TLC or QLC flash have often larger flash pages than SSDs
based on SLC or MLC (see Table 1) as well as larger ca-
pacities. As a result, it can be beneficial to used TLC/QLC
SSDs as data drives in combination with SLC/MLC SSDs
deployed in CDAs. Please note that TLC/QLC SSDs also
often have less dies and planes than a SLC/MLC SSD with
a comparable per device capacity, which results also in a
potentially lower RMW throughput. However, when SSDs
are used as data drives (in scenarios with small requests),
it is not appealing to use HDDs in CDAs due to the fact
that HDDs provide a vary low RMW throughput for small
requests. However, when using CBRO the most reliable
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method to assess the suitability of a particular storage device
combination is to conduct RMW throughput measurements
(see Sect. 6.4.1). The reason is that parameter values spe-
cific to a particular storage device model (e.g., flash page
size of an SSD or the average data transfer rate of an HDD)
are often not included in the product documentation.

5.4.2 Write Endurance and Reliability
For NAND flash SSDs limited write endurance is an issue,
irrespective of whether they are used as data drives or in
CDAs. The number of possible writes, more precisely pro-
gram/erase (P/E) cycles, is determined by the used NAND
flash package (more bits per cell and smaller feature size
mostly yield less P/E cycles), and the write amplification
(WA) [7], which strongly depends on the degree of OP, but
also on the write request size. Previous studies [7, 11] on
the influence of OP to (small) random write performance of
SSDs indicate that a considerable OP (at least about 25%,
which is quite common for enterprise SSDs) helps to keep
the WA low and, thus, to increase the write endurance no-
tably. However, SSDs will eventually have to be replaced
(which can be done without interrupting the operation of
a CBRO-based drive array). The appropriate time for re-
placement can be determined based on SMART [26], which
is a mechanism for self-monitoring and error reporting in-
corporated in SSDs using standard disk drive interfaces (for
PCI Express SSDs similar mechanisms are available). For
most such SSDs a wear-out indicator (value of corresponding
SMART attribute) can be permanently monitored in order
to detect if the wear threshold defined by the manufacturer
has been reached.

In the simplest case, a CDA consists of a single device, thus,
its reliability is comparable with that of a data drive. Since
SSDs are considered more reliable than HDDs [14, Sect. 8.7],
with a single SSD CDA no precautions are needed when
HDDs are used as data drives. However, in CDAs compris-
ing multiple drives, failures become more likely with more
drives, thus, potentially demanding erasure coding or data
replication, which in turn increases the number of drives in
the CDA. For small CDAs, no redundancy (pure data strip-
ing for load balancing), data mirroring (like with RAID-1)
or a combination of both is potentially suitable in order to
obtain a sufficient reliability. A recent reliability analysis of
SSD arrays using a single erasure code [17] suggests that for
workloads dominated by small writes and very small SSD
arrays (up to 4 drives), pure data striping can be more re-
liable than RAID-5 due to additional writes necessary to
maintain parity (especially with low OP). For such small
requests that RMW is superior to RCW and FSW, a recur-
sive application of CBRO can provide the necessary reliabil-
ity with less additional devices compared to replication and
data layouts with distributed code blocks like RAID-5 and
RAID-6. This changes for larger requests because RCWs
and FSWs result in notably higher random write through-
put than RMWs (and CBRO yields almost no benefits in
case of RCWs and FSWs). However, it should be noted
that even drive failures within a CDA do not entail immedi-
ate data loss, but rather a (partial) loss of redundancy, and
potentially lower CDA performance during a rebuild.

6. EXPERIMENTAL EVALUATION
This section provides an experimental evaluation of device-
aware data striping and of the benefits due to CBRO. First,
we describe our experimental setup. Then, we examine the
sensitivity of the random access throughput to the request
size for HDDs and SSDs. Afterwards, we experimentally
validate the benefits of device-aware data striping in homo-
geneous drive arrays comprising either HDDs or SSDs. Fi-
nally, we describe an implementation of CBRO, using HDDs
as data drives and SSD arrays as CDAs. Based on this,
we evaluate the random write throughput increase due to
CBRO and its scalability for small as well as larger requests.

6.1 Experimental Setup

Hardware and OS. All experiments were conducted on
dual-socket server machines (each with two Intel Xeon E5-
2680 CPU and 256 GiB RAM) equipped with Seagate HDDs
and Samsung SSDs. The used Seagate ST91000640SS 1 TB
HDDs (SAS-2, 7200 rpm) are attached to HBAs based on
LSISAS2308. The used Samsung 830 SSDs (SATA-3, with
firmware revision CXM03B1Q) are attached to HBAs based
on LSISAS3008 and have capacities of 128 GB (referred to
as L for low capacity) and 256 GB (referred to as H for
high capacity). Furthermore, the HDDs were configured to
use Tagged Command Queuing (TCQ) and SSDs to use Na-
tive Command Queuing (NCQ). Gentoo Linux with kernel
version 3.16.7 was used as OS, and the kernel was config-
ured to use noop I/O scheduler for HDDs (leaving seek time
optimization to TCQ) and SSDs.

Software RAID and CBRO Implementation. For homo-
geneous HDD and SSD RAID-5/6 setups, where the code
blocks are spread over all drives (which is not the case for
CBRO), the default data layout (i.e., left-asymmetric) was
used. In case of CBRO we used the “parity-last” data lay-
out, where the code blocks are placed onto the last drive(s).
All experiments for homogeneous and heterogeneous RAID-
5/6 setups were conducted using a customized version of the
MD RAID 4/5/6 driver (known as Linux Software RAID),
which was changed such that it performs RMWs (if ap-
propriate) also when two erasure codes are used, because
the original driver performs always RCWs when two era-
sure codes are used. The MD RAID 4/5/6 driver uses
a stripe buffer (to process multiple outstanding write re-
quests), whose size was chosen by setting the configuration
parameter “stripe cache size” such that up to q stripes can
be accommodated if possible (because the maximum value is
32, 768), where q denotes the queue depth for asynchronous
I/O. In addition to this, logical write request processing can
be distributed to multiple threads through the configuration
parameter “group thread cnt” to increase the throughput.
Unless otherwise stated, we use this feature only for SSD-
based RAID-5/6 setups including 1-CBRO.0-based CDAs,
whereby we set the number of threads to one thread per
deployed SSD. Furthermore, for all RAID-5/6 setups the
write-intent bitmap was disabled, which would otherwise
reduce the (random) write throughput. Please note that
MD RAID 4/5/6 demands that the striping unit size is spec-
ified in KiB and has to be a power of 2 greater or equal to
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4 KiB, which imposes limitations on the possible data strip-
ing configurations.

In the remainder, we use the following naming scheme for
CBRO setups, where k is the number of CDAs (equal to
number of used erasure codes), DD denotes a data drive
within a CDA, and CD a data drive in the nested CDA:

<k> – CBRO . <Type of 1st CDA> – <#DD> – <#CD>/

<Type of 2nd CDA> – <#DD> – <#CD>

We deploy only SSDs in CDAs and annotate the number of
drives by an L or a H to distinguish between the two versions
of the Samsung 830 SSDs with 128 GB and 256 GB. In CDA
setups based on an SSD RAID-0 or an SSD RAID-5, stripe
unit size was set to 8 KiB, i.e., effective flash page size [12].
However, in nested CBRO setups which were used for small
random writes affecting whole data blocks, the stripe unit
size was set to the corresponding request size.

SSD Preconditioning and Over-Provisioning. In order
to eliminate the influence of previous workloads, at the start
of an experiment, an enhanced ATA secure erase command
that erases the data in all flash cells was performed on all
used SSDs. Afterwards, the SSDs were preconditioned in
order to obtain steady state performance [11]) by writing
3 times the total physical flash capacity at random with the
a request size of 8 KiB, which corresponds to the (effective)
flash page size. In the case of CBRO, the degree of OP
results from the number of SSDs deployed in a particular
CDA setup: We used 4 SSD-H (or 8 SSD-L), 5 SSD-H (or
10 SSD-L) and 7 SSD-H (or 14 SSD-L) per CDA (as data
drives), yielding 9%, 27%, and 48% OP, respectively. For
experiments not regarding CBRO, the used degree of OP
was explicitly specified.

Benchmarks and Measurement Methodology. Each mea-
surement was repeated three times and the arithmetic aver-
age is reported as result. All measurements were performed
on raw block devices under the use of native Linux asyn-
chronous I/O and using direct I/O to minimize the impact
of caching. Please note that direct I/O requires that the
starting address is aligned to sector boundaries and that the
request size is a multiple of the sector size. All random
read/write throughput measurements were conducted with
fio 2.1.8 and a per device queue depth (QD) of 32 requests
(since higher queue depths yield no throughput increase).
For measurements of RMW throughput in the context of
CBRO a custom benchmark tool was used and the results
were obtained based on a duration of 10 minutes per repeti-
tion, while using a per device queue depth of 32. In addition
to our previous work [12] on CBRO, we consider also larger
request sizes due to the fact that in HDD arrays (using data
striping with erasure coding) RMWs can be favorable for
random write sizes in the range of several hundreds of KiB,
depending on the used HDD model and the data striping
configuration. Consequently, in the context of CBRO we
consider random writes with a small request size of 4 KiB,
8 KiB, and 16 KiB as well as with a larger request size of
64 KiB, 256 KiB, and 1024 KiB.

6.2 Single Drive Random Access Throughput
In the following, we examine the sensitivity of the random
access throughput of a single HDD and SSD to the request
size. For SSDs, we also consider the dependency of random
access throughput to the degree of OP.

6.2.1 Hard Disk Drives (HDDs)
For small requests, the random access throughput of HDDs
is primarily determined by the head positioning time, lim-
iting the achievable number of IOPS. With increasing re-
quest size, the number of IOPS declines due to the increas-
ing data transfer time (cf. Sect. 2.1). However, the random
access throughput of HDDs is comparably high for reads
and writes. To validate this, we conducted measurements of
the average random read and write throughput (in terms of
IOPS and MiB/s) for the Seagate ST91000640SS HDD for
request sizes between 1 KiB and 16 MiB. The results are
shown in Fig. 5, where throughput in IOPS is depicted in
Fig. 5(a) and the throughput in MiB/s in Fig. 5(b).

Looking at the throughput in IOPS shown in Fig. 5(a) re-
veals that random reads are about 5% faster for requests
up to 32 KiB. For example, in case of the smallest request
size (i.e., 1 KiB), the read throughput amounts 210 IOPS
while the write throughput is only 199 IOPS. This stems
from a higher head settling time for writes in comparison to
reads [10, Sect. 23.2.4]. However, the difference disappears
for larger requests making random reads and writes com-
parably fast. Considering the random access throughput of
HDDs in terms of MiB/s shown in Fig. 5(b), it can be no-
ticed that up to about 128 KiB it increases nearly linearly
with the request size, while the throughput curve slowly lev-
els out for larger requests, eventually approaching the media
data rate. Consequently, for small requests, the random ac-
cess throughput of an HDD is primarily limited due to head
positioning time, while for large requests, it is limited by
the media data rate. However, albeit the small difference
between read and write throughput for small request sizes,
reads and writes can be considered as comparably fast.

We have to obtain the average head positioning time and the
average data transfer rate of a Seagate ST91000640SS HDD
through measurements to determine onto which number of
HDDs should logical random writes with a certain request
size be spread in order to achieve the highest aggregated
random write throughput in an array (cf. Sect. 4.1). For
very small requests (one sector is the smallest possible size)
the data transfer time is negligible small, thus, the average
service time for a request gives a reasonable approximation
of the average head positioning time. We consider the re-
ciprocal of the average write throughput in IOPS as the
average service time for a request. As a result, we measured
the average throughput based on 10, 000, 000 single-sector
random writes using the whole logical address range. The
measured average throughput of single-sector random writes
is 200 IOPS, which corresponds to an average service time
of 5 ms. We determine the average data transfer rate of an
HDD by measuring the write throughput for requests with
a smallest possible head positioning time, thus, for large se-
quential writes. Using the whole logical address range of
the HDD, we got an average sequential write throughput of
89, 592 KiB/s for requests comprising 16 MiB.
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Figure 5: Average random access throughput of an HDD on varying request size.

6.2.2 NAND Flash Memory SSDs
In case of SSDs, we examine the sensitivity of the random
access throughput to the request size for the used SSD mod-
els, i.e., the Samsung 830 128 GB (SSD-L) and 256 GB SSDs
(SSD-H). We compare the sensitivity of the random access
throughput to the request size for aged SSDs (that have
been subject to random writes) and pristine SSDs. Aging is
achieved by preconditioning with page-sized random writes
(see Sect. 6.1) and for pristine SSDs the data in all flash
cells was erased. In order to examine the sensitivity of the
random access throughput to the request size, we measured
the average random read and write throughput for request
sizes between 1 KiB and 16, 384 KiB (16 MiB). Please note
that in case of writes the amount of data written per repe-
tition (the measured values are averaged over 3 repetitions)
corresponds to 1/4 of the physical flash capacity, hence, in
case of pristine SSD no GC is necessary. The results are
shown in Fig. 6.

Looking at the measured throughput values for precondi-
tioned SSDs in Fig. 6(a) reveals that the read throughput
is generally higher than the write throughput, although the
random access throughput for requests smaller than 8 KiB is
notably lower than for larger request sizes. This is attributed
to an effective flash page size of 8 KiB [12] and, thus, a lower
performance due to sub-page reads and writes (cf. Sect. 2.2).
Considering the write throughput for requests larger than
8 KiB, the throughput is virtually insensitive to the request
size for both SSD models, while the 256 GB SSD provides
a slightly higher write throughput than the 128 GB SSD.
However, for whole-page reads between 8 KiB and 64 KiB
the throughput depends on the request size for both SSD
models, which is caused by insufficient maximum request
queue depth of the SATA-3 host interface. Besides this, in
case of the SSD-L, the read throughput breaks slightly down
at 2 MiB, which we cannot explain.

Next, we compare the results for pristine SSDs presented in
Fig. 6(b) to that of preconditioned SSDs shown in Fig. 6(a).
Obviously, like for preconditioned SSDs, the read and write
throughput is lower for requests smaller than 8 KiB in com-
parison to larger requests. Moreover, there is also a slight
difference in write throughput for sub-page requests (less
than 8 KiB) between the two SSD models. However, the

maximum random write throughput of both SSDs is notably
higher than for preconditioned SSDs which can be attributed
to the fact that GC is not necessary. For whole-page writes
between 8 KiB and 32 KiB, the random write throughput
of the 256 GB SSD increases, indicating insufficient maxi-
mum request queue depth which does not affect the 128 GB
SSD in this case. Surprisingly, the random write through-
put of the 256 GB SSD drops then for requests larger than
256 KiB from around 400 MiB/s to 350 MiB/s. Consider-
ing the random read throughput, both SSD models exhibit
a very similar read throughput to the preconditioned SSDs,
which confirms that the read throughput is independent of
the degree of OP and the previous writes [11]. However,
the results for preconditioned SSDs are more meaningful
because they represent the condition of SSDs deployed in
productive data storage systems, while pristine SSDs reflect
only a temporary situation.

Even if we consider preconditioned SSDs, which represent
the condition of SSDs deployed in productive data storage
systems, the sensitivity of the random read throughput due
to insufficient maximum request queue depth, introduces a
variation of α for requests between 8 KiB and 64 KiB for
both Samsung 830 SSD variants. In order to illustrate this,
we have derived α from measurements of random write and
read throughput for preconditioned SSDs. The results are
depicted in Fig. 7. Looking at the course of α for request
sizes between 8 KiB and 64 KiB reveals that the value of
α declines for both SSDs. This stems from the fact that
the random read throughput of each SSD model increases
between 8 KiB and 64 KiB while the random write through-
put remains nearly constant (cf. Fig. 6(a)). However, the
variation of α stems from the used disk host interface which
is inadequate even for the Samsung 830 SSDs introduced in
2011. Such issues do not concern PCI Express SSDs that
employ a more suitable logical device interface like NVM
Express with a maximum queue depth of 65, 536 and the
possibility to use even multiple queues.

However, although the random write throughput of precon-
ditioned SSDs is independent of the request size for whole-
page writes, the degree of OP determines its amount. In
order to examine how the amount of random write through-
put changes with the degree of OP, we also conducted write
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Figure 6: Average random access throughput of preconditioned SSDs with 27% OP and pristine SSDs on
varying request size (base-2 logarithmic scaled x-axis).
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throughput measurements for preconditioned SSD-L with
varying degree of OP and request size. The results are shown
in Fig. 8 and indicate that the random write throughput
is also virtually insensitive to the request size (except of
sub-page writes represented by 4 KiB writes) when the WA
changes due to a different degree of OP. Besides this, the re-
sults show that the random write throughput is strongly af-
fected by the degree of OP. As an example, the random write
throughput increases from around 30 MiB/s to 80 MiB/s,
when OP is raised from 10% to 20%.

6.3 Device-Aware Data Striping
In this part of our experimental evaluation, we examine
the benefits of device-aware data striping in homogeneous
drive arrays comprising either HDDs or SSDs. In particu-
lar, we validate our analysis of the aggregated random write
throughput presented in Sect. 4 and examine the perfor-
mance gain due to device-aware data striping configurations
in HDD as well as SSD arrays.

6.3.1 Random Write Throughput of HDD Arrays
The following experimental evaluation of the random write
throughput in erasure-coded HDD arrays has the objective
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Figure 8: Average random write throughput of a
preconditioned Samsung 830 128 GB SSD on vary-
ing request size and degree of OP.

to validate our analysis as well as the proposed method for
the choice of the stripe unit size in Sect. 4.1.

First, we validate our analysis from Sect. 4.1, which indi-
cates that for logical random writes up to a certain logical
request size, the highest aggregated random write through-
put is achieved (for arrays with n > 2·k+2 HDDs) in case of
RMW. To accomplish this, we compare the average random
write throughput of all three code block update methods on
varying logical request sizes and when data blocks are writ-
ten at whole. Considering a particular logical request size s,
the used code block update method results from the number
of affected data blocks d in a stripe, which depends on the
stripe unit size u, stripe width n, and the number of erasure
codes k. Since we consider a particular logical request size
s for all code block update methods (Sect. 4.1), we have to
choose the stripe width n as well as the stripe unit size u
such that each code block update method can occur. Due to
the constraints on the choice of the stripe unit size imposed
by Linux Software RAID (Sect. 6.1), this is achieved when
the number of data blocks n− k in a stripe is also a power
of 2. RMW can only be favorable over RCW if n > 2 · k+ 2
(i.e., n > 4 for k = 1 and n > 6 for k = 2), hence, we
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Figure 9: Average random write throughput of
HDD RAID-5 and RAID-6 on varying code block
update method and request size of logical writes.

choose n − k = 8 (i.e., the smallest power of two greater
than 4 and 6). This choice implies n = 9 in case of k = 1
(RAID-5) and n = 10 in case of k = 2 (RAID-6). Using the
measured values of the average head positioning time and
the average data transfer rate (Sect. 6.2.1) permits to calcu-
late, for an HDD RAID-5 with n = 9 and an HDD RAID-6
with n = 10, up to which logical request size RMW yields a
higher throughput than FSW (based on Eq. 18) as well as
to determine the logical request size intervals where which
RMW variant results in the highest throughput among the
others (using Eq. 14).

In case of an HDD RAID-5 with n = 9 RMW is favorable
for d up to 3 (since d 9−2·1

2
e − 1 = 3), however only RMW

with d = 1 is superior to FSW. In case of an HDD RAID-
6 with n = 10 RMW is favorable for d up to 2 (because
d 10−2·2

2
e − 1 = 2), however also only RMW with d = 1 is

superior to FSW. Using Eq. 18, we get that for RAID-5
with n = 9 RMW with d = 1 surpasses FSW for logical
requests up to 779.06 KiB and that for RAID-6 with n = 10
RMW with d = 1 surpasses FSW for logical requests up to
377.23 KiB. As a result, we consider logical request sizes of
256 KiB, 512 KiB, and 1024 KiB. We are interested in the
aggregated random write throughput when a logical random
write affects d ∈ {1, 2, 4, 8} whole data blocks. For both
RAID setups, a logical random write will incur an RMW in
case of d = 1 and d = 2, an RCW for d = 4 as well as an FSW
if d = 8. In order to ensure that each logical write affects
a particular number of whole data blocks we set the stripe
unit size to u = s/d and align the starting address of each
logical write to the boundaries of blocks comprising s KiB
to ensure that each logical write stays within a single stripe
(since otherwise a logical write may result in an unwanted
code block update method, e.g., in two RMWs instead of
a single RCW in case of d = 4). The resulting aggregated
random write throughput of a correspondingly configured
HDD RAID-5 (k = 1) as well as HDD RAID-6 (k = 2)
based on the average over 100, 000 logical writes for each
logical request size is shown in Fig. 9.

First, we take a look at the results for the HDD RAID-5
(k = 1) with n = 9, where RMW with d = 1 is superior to
FSW up to a logical request size of 779.06 KiB. According
to Fig. 9, RMW with d = 1 yields the highest through-
put for logical requests comprising 256 KiB and 512 KiB,
while FSW results in the highest throughput for a logical re-
quest size of 1024 KiB. Next, we consider the HDD RAID-6
(k = 2) with n = 10, where RMW with d = 1 is superior to
FSW up to a logical request size of 377.23 KiB. The mea-

sured values in Fig. 9 clearly show that RMW with d = 1
achieves the highest throughput for logical requests com-
prising 256 KiB, while FSW is superior for larger logical
requests, i.e., at a request size of 512 KiB and 1024 KiB.
In summary, the measured aggregated throughput values
shown in Fig. 9 support our claim that up to a certain log-
ical request size which can be calculated for a particular
setup, the highest aggregated random write throughput is
achieved in case of RMW.

Now, we validate the recommendations for the choice of the
stripe unit size in an erasure-coded HDD arrays (Sect. 4.1).
This includes two claims: The first is that the aggregated
random write throughput can be increased by tuning the
stripe unit size such that logical requests whose request size
lies in a range, where RMW is favorable over FSW end up
in an RMW affecting the corresponding number of data
blocks. The second is that if (almost) all logical requests
have a request size larger than the logical request size where
a RMW variant surpasses FSW, the aggregated random
write throughput is potentially not improved by choosing
the smallest possible stripe unit size in order to increase the
number of FSWs (cf. Sect. 4.1).

To check this, we measured the average aggregated ran-
dom write throughput of n = 10 HDDs deployed once in
a RAID-5 (k = 1) and once in a RAID-6 (k = 2) under
random write workloads tailored to the request size range
and for stripe unit sizes between 4 KiB (smallest possible
value) and 4096 KiB (a multiple of the logical request size
where RMW with d = 1 surpasses FSW). Each workload
consists of 100, 000 writes with a randomly chosen starting
address (aligned to sector boundaries due to direct I/O) and
a randomly chosen request size s within a specific interval.
In case of the HDD RAID-5, RMW with d = 1 surpasses
FSW up to a logical request size of 930.38 KiB and RMW
with d = 2 surpasses FSW and RMW with d = 1 for logi-
cal requests between 895.92 KiB and 948.62 KiB. However,
due to the small logical request size subinterval where RMW
with d = 2 is best and the inability of Linux Software RAID
to use a stripe unit size of 896 KiB, we consider only the
request size subinterval of RMW with d = 1. Thus, we mea-
sure in case of HDD RAID-5 the random write throughput
once for logical requests between 512 bytes and 930 KiB and
once for logical requests where FSW is superior, for example
with logical request sizes between 949 KiB and 1, 280 KiB. In
case of HDD RAID-6, RMW with d = 1 surpasses FSW and
all RMW variants up to a logical request size of 377.23 KiB.
Thus, we measure the random write throughput once for
logical requests between 512 bytes and 377 KiB and once
for logical requests where FSW surpasses RMW, namely for
logical request sizes between 378 KiB and 512 KiB.

The results of the corresponding measurements are shown
in Fig. 10. First, we consider the results for the two logical
request size subintervals where RMW with d = 1 is superior
to FSW which are represented by the two leftmost groups of
bars in Fig. 10. Looking at the results for both, HDD RAID-
5 and HDD RAID-6, reveals that the highest throughput is
achieved for the largest stripe unit size, which is 4096 KiB.
This supports our claim that random write throughput can
be increased in situations, where the size of (almost) all re-
quests lies within a range, where RMW results in a higher
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Figure 11: Measured average random write
throughput of Samsung 830 128 GB SSD RAID-5
and RAID-6 on varying code block update method
and request size of logical writes.

random write throughput than FSW, by tuning the stripe
unit size such that logical writes end up in an RMW.

Next, we take a look at the results for the two logical request
size subintervals where FSW is superior to all RMW vari-
ants, which are represented by the two rightmost groups of
bars in Fig. 10. Obviously, setting the stripe unit size to the
smallest possible value offered by Linux Software RAID (i.e.,
4 KiB) in order to increase the number of FSWs does not
yield the highest aggregated random write throughput. In-
stead, using a stripe unit size of 4096 KiB for the considered
workloads is apparently a better choice for the HDD RAID-
5 as well as the HDD RAID-6. This can be attributed to the
fact that the logical writes do not end up only in FSWs, but
also in RCWs and RMWs which decreases the throughput.

6.3.2 Random Write Throughput of SSD Arrays
Our analysis in Sect. 4.2 suggests that if random writes to
an array with n SSDs which uses data striping with k era-
sure codes can be decomposed into dn−2·k

2
e to n−k physical

writes with a request size at which the used SSDs provide
(nearly) the highest random write throughput, RCW and
FSW result in higher aggregated random write throughput
than RMW. We validate our analysis by measuring the ran-
dom write throughput of preconditioned SSD-L with 27%
OP deployed in a RAID-5 (k = 1) and RAID-6 (k = 2).
Like for HDDs, we also consider setups with n− k = 8, i.e.,
n = 9 in case of RAID-5 (k = 1) and n = 10 in case of
RAID-6 (k = 2) in order to measure the aggregated ran-
dom write throughput for each code block update method.
We compare the aggregated random write throughput for a
certain logical request size s under each code block update
method in order to check whether RCW and FSW outper-
form RMW. We consider the case, where a logical write
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Figure 12: Analytical average random write
throughput of Samsung 830 256 GB SSD RAID-5
and RAID-6 on varying code block update method
and request size of logical writes.

affects d ∈ {1, 2, 4, 8} whole data blocks incurring either an
RMW (if d = 1 or d = 2) or an RCW (if d = 4), or an FSW
(if d = 8). We ensure that each logical write affects a par-
ticular number of whole data blocks in the same way as for
HDDs, i.e., by setting u = s/d and by correspondingly align-
ing the starting address of each logical write. We consider
three different logical request sizes which are chosen such
that the resulting physical request size is an integral multi-
ple of the flash page size (8 KiB) for any considered value of d
and results in a wide range of physical request sizes (between
8 KiB and 1024 KiB): 64 KiB, 256 KiB, and 1024 KiB. This
permits to study the influence of the (request size-sensitive)
random read throughput to the aggregated random write
throughput (of the SSD array) in case of RMW and RCW.
However, we have not enough SSD-H to deploy the consid-
ered RAID-5/6 setups, hence, we provide analytical results
based on our performance model in Sect. 3.2 and the mea-
sured throughput values of a single SSD-H 27% OP shown
in Fig. 6. The measured values of the average aggregated
random write throughput for SSD-L are shown in Fig. 11,
while the analytical results are depicted in Fig. 12.

The measured aggregated random write throughput for SSD-
L as shown in Fig. 11 confirms our analytical results (cf.
Sect. 4.2) for logical writes comprising whole data blocks
because RCW and especially FSW result in case of SSD
RAID-5 as well as of SSD RAID-6 in a higher random write
throughput than RMW. Moreover, considering setups with
the same number of erasure codes k (i.e., RAID-5 with k = 1
and RAID-6 with k = 2) reveals that the aggregated random
write throughput is nearly equally high for all three logical
request sizes and, thus, virtually independent of the logical
request size.

Looking at the analytical aggregated random write through-
put values for SSD-H SSDs shown in Fig. 12 also indicates
that the aggregated random write throughput is virtually
independent of the logical request size, but the achieved
write throughput values are slightly higher than that of
SSD-L, which reflects the higher write throughput of a SSD-
H (cf. Fig. 6(a)). For example, the throughput for FSWs
amount approximately 1, 200 MB/s in case of SSD-H (see
Fig. 12), but only about 950 MB/s in case of SSD-L (see
Fig. 11). However, for both versions of the Samsung 830
SSD, the throughput for RMW and RCW decreases with
increasing number of erasure codes. This is reflected by a
(generally) lower throughput in case of RAID-6 than in case
of RAID-5 (for a comparable number of SSDs).
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Figure 13: Average random write throughput of
Samsung 830 128 GB SSD RAID-5 with n=9 and
RAID-6 with n=10 on varying stripe unit size u.

After confirming our analysis of aggregated random write
throughput in SSD arrays (using data striping with erasure
coding) for requests affecting whole data blocks, we evalu-
ate the benefit of device-aware data striping for workloads,
where random writes can affect only a part of one or more
data blocks (up to 2 data blocks) which results in sub-page
(over-)writes. According to Sect. 4.2, the stripe unit size
should be set to the flash page size. We evaluate this by
measuring the aggregated random write throughput of SSD-
L deployed in a RAID-5 setup with n = 9 SSDs and in a
RAID-6 setup with n = 10 SSDs. In order to check if set-
ting u = p = 8 KiB (to the effective flash page size) is a
good choice for mixed workloads (including sub-page and
multi-page random writes) and workloads comprising only
sub-page random writes, we measure the throughput for dif-
ferent stripe unit sizes.

We use a mixed workload that consists of 2, 000, 000 logi-
cal writes each having a randomly chosen starting address
(aligned to sector boundaries) and a randomly chosen re-
quest size between 1 sector (512 bytes) and 1, 024 sectors
(512 KiB). Beside this, we apply a workload comprising
(mostly) sub-page random writes with a randomly chosen
request size between 1 sector (512 bytes) and 16 sectors
(8 KiB) as well as with the same number of logical writes
and starting address properties. We conduct random write
throughput measurements for both workloads and striping
unit sizes of 4 KiB (lowest possible value), 8 KiB, 16 KiB,
32 KiB, 64 KiB, and 128 KiB. Please note that for u =
128 KiB no FSWs will occur since each stripe comprises
1024 KiB and the logical request size is at most 512 KiB.
This permits to study the throughput in absence of FSWs,
which should result in notably lower random write through-
put compared to smaller stripe units. The measured aggre-
gated random write throughput is depicted in Fig. 13.

First, we consider the results for the mixed workload (com-
prising sub-page and multi-page random writes) that are
represented by the two leftmost groups of bars in Fig. 13.
Obviously, the highest aggregated random write throughput
is achieved when the stripe unit size is set to the capac-
ity of exactly one flash page, i.e., 8 KiB, which coincides
with our argumentation in Sect. 4.2. Moreover, the lowest
throughput occurs if the stripe unit size is chosen such large
that no FSWs occur, which is the case for u = 128 KiB.
Now, we take a look at the results for the sub-page random
writes represented by the two rightmost groups of bars in
Fig. 13. In case of RAID-5 the attained aggregated ran-
dom write throughput is nearly equally high for all stripe

unit sizes except of 4 KiB (which is about 10% higher).
In case of RAID-6, the highest aggregated random write
throughput is reached using a stripe unit size of 4 KiB and
8 KiB, while the throughput is comparably high for larger
stripe unit sizes. The fact that a slightly higher through-
put (about 10%) is achieved for the smallest (compared to
larger) stripe unit sizes stands to some extent in contrast to
our argumentation that sub-page writes should affect only
one data block to prevent that they end up in multiple even
smaller physical requests. It would be interesting to check
if the trend towards higher throughput at even lower stripe
unit sizes (i.e., less than 4 KiB) continues, but the small-
est possible the stripe unit size is 4 KiB when using Linux
Software RAID.

6.4 Code Block Request Offloading
In the following, we present an experimental evaluation of
the benefits of CBRO. We use HDDs as data drives and SSD
arrays as CDAs. In contrast to our previous work [12] we
also consider larger request sizes due to the fact that in HDD
arrays (using data striping with erasure coding) RMWs can
be favorable for random write sizes in the range of several
hundreds of KiB (depending on the used HDD model and
the data striping configuration). First, we assess the CDA
scalability. Afterwards, we experimentally evaluate the re-
sults of our write performance analysis in Sect. 5.2 and we
examine the SSD write endurance in CBRO setups. How-
ever, as a consequence of our findings in Sect. 6.3, we use a
device-aware data striping configuration for HDD and SSD
arrays that employ data striping with erasure coding.

6.4.1 Check Drive Array Scalability
The first step is to determine the required number of drives
in each CDA (cf. Sect. 5.3). In this evaluation, 1 TB HDDs
are used as data drives, and SSDs with capacities of 128 GB
(SSD-L) as well as 256 GB (SSD-H) are used in CDAs. Since
we intend to use the whole storage capacity of each HDD,
each CDA must comprise at least 8 SSD-L or 4 SSD-H to
provide enough capacity for all code blocks related to an
erasure code. However, as we have 7 SSD-H at our disposal,
we consider CDA setups with up to 7 SSD-H and 14 SSD-
L. In order to assess the necessary CDA performance to
cope with all code block requests from up to 16 HDDs, we
measure the average random RMW throughput of an HDD
and the considered SSD-based CDAs on varying request size.
Please note that we use disk form factor SSDs whose random
access performance is limited due to the usage of standard
disk host interface (SATA-3 with a maximum throughput
of 600 MB/s). Due to this, with increasing random RMW
request size the throughput advantage of SSDs over HDDs
is shrinking (see Sect. 5.4.1).

In order to determine the scalability of a particular CDA
setup, we consider the number of HDDs whose requests can
be served by a single SSD in a certain CDA setup. Conse-
quently, we measured the average random RMW through-
put of a single HDD and of CDA setups for request sizes of
4 KiB, 8 KiB, 16 KiB, 64 KiB, 256 KiB, and 1024 KiB. In
the following, we differentiate between small requests (i.e.,
4 KiB, 8 KiB, and 16 KiB) and larger requests (i.e., 64 KiB,
256 KiB, and 1024 KiB). As a consequence of our results in
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Figure 14: Scalability of different CDA setups on varying request size and degree of OP with respect to the
number of HDDs whose code block requests can be served by a single SSD (base-2 logarithmic scaled y-axis).

Sect. 6.3, we apply device-aware data striping configurations
to CDAs that involve erasure coding: For small requests up
to 16 KiB (two flash pages), RMW is favorable over RCW
for n ≥ 8 and we use nested CBRO setups as CDAs like in
our previous work [12]. However, for larger requests RCW
and FSW are favorable over RMW, thus we use SSD RAID-
5 CDAs because CBRO provides almost no benefit in case of
RCW and FSW (Sect. 5). Please note that in case of a CDA
based on a nested CBRO setup, we deployed 4 SSD-L in the
SSD RAID-0 sub-CDA in case of 9% OP (8 SSD-L as data
drives) and, for larger degree of OP, we deployed 8 SSD-L
in the SSD RAID-0 sub-CDA, because an SSD RAID-0 sub-
CDA with 4 SSD-L cannot cope with the RMW requests
from 10 and 14 SSD-L (data drives). In summary, the con-
sidered CDAs based on a nested CBRO setup are 1-CBRO.1-
CBRO.0-8L-4L in case of 9% OP, 1-CBRO.1-CBRO.0-10L-
8L in case of 27% OP, and 1-CBRO.1-CBRO.0-14L-8L in
case of 48% OP (cf. Sect.6.1). Based on the measured av-
erage RMW throughput values for each CDA setup and a
single HDD, we calculated the number of HDDs whose code
block requests can be served by a single SSD and a single
data SSD in a nested CBRO setup, respectively. The cor-
responding scalability results with regard to RMW request
size and OP are shown in Fig. 14.

First, we take a look at the results for small writes shown in
Fig. 14(a). It can be noticed that an SSD in an RAID-0 CDA
(3 leftmost bars in each group) is able to cope with more data
HDDs than an 1-CBRO.0 CDA. Considering SSD RAID-0
CDAs, the scalability noticeably increases with the degree
of OP for all request sizes. However, considering SSD 1-
CBRO.0 CDAs, this does not apply for requests comprising
8 or 16 KiB and the highest degree of OP (48%), represented
by the rightmost bars in each group, because the number of
HDDs whose code block requests can be served by a single
SSD decreases (instead of increasing). The reason is the
saturation of the SSD RAID-0 sub-CDA comprising 8 SSD-
L. In order to overcome this, either even more SSD-L or
faster SSDs are necessary. Apart from this, a comparison of
the results for the three request sizes shows that the results
for 4 or 8 KiB are similar, while for 16 KiB, each SSD can
cope with the load of less HDDs. However, even with the
lowest degree of OP, and hence, lowest increase of hardware
costs, a single SSD can cope with the code block requests
from 16 HDDs in case of 16 KiB requests and 32 HDDs
for 4 and 8 KiB requests. This makes CBRO appealing for
workloads dominated by small random writes.

When considering the results for larger writes as depicted in
Fig. 14(b), it can be noticed that a single SSD in a CDA can
in general cope only with the code block requests of notably
less HDDs than for small requests. This is attributed to the
limited random access throughput of the used disk form fac-
tor SSDs, since the random access throughput of the HDDs
increases with growing request size, while the random ac-
cess throughput of the SSDs is limited by the used disk host
interface. However, like for small requests, the scalability
increases with the degree of OP, especially when compar-
ing the lowest OP (9%) with a reasonable degree of OP
(27%). Moreover, CDAs based on SSD RAID-0 provide bet-
ter scalability than CDAs based on SSD RAID-5. This stems
from additional reads/writes that are necessary to keep the
code blocks up to date, thus, reducing the aggregated RMW
throughput of a CDA based on an SSD RAID-5.

6.4.2 Random Write Throughput
According to our analysis in Sect. 5.2, applying CBRO im-
proves the throughput of random writes in case of an RMW
compared to setups with distributed code blocks. We extend
our previous work on CBRO [12] by focusing on the through-
put for random single block writes with notably larger block
sizes (up to 1, 024 KiB). In order to investigate the perfor-
mance improvement due to the use of CBRO, we have con-
ducted random write throughput measurements for different
CBRO setups using 16 HDDs as data drives as well as for
HDD RAID-5 and HDD RAID-6, both with 16 HDDs. Since
we are interested in the throughput increase due to CBRO,
we report the relative throughput compared to RAID setups
with the same number of erasure codes k, but distributed
code blocks.

Consequently, the average random write throughput of 1-
CBRO setups is compared to RAID-5, and of 2-CBRO se-
tups to RAID-6. The measurements are based on 500, 000
random writes per repetition and for each considered (logi-
cal) request size. In case of small random writes comprising
4, 8 or 16 KiB, the measured values were virtually indepen-
dent of the considered degrees of OP, consequently we report
only the values for the lowest (9%) degree of OP. However,
in contrast to this, for larger random writes comprising 64,
256 or 1024 KiB, we report the values in case of CDA setups
with the highest number of SSDs and degree of OP (48%),
because for 1024 KiB random writes SSD RAID-0 based
CDA is not fast enough to cope with the RMW requests
from 16 HDDs.

APPLIED COMPUTING REVIEW  DEC. 2015,  VOL. 15,  NO. 4 48



1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60
2.80
3.00

2-CBRO.1-CBRO.0-8L-4L/0-4H 1-CBRO.0-4H 1-CBRO.1-CBRO.0-8L-4L

R
el

at
iv

e 
A

vg
. W

rit
e 

Th
ro

ug
hp

ut Analytical
16 HDDs,    4 KiB writes
16 HDDs,    8 KiB writes

16 HDDs,   16 KiB writes

(a) Small Request Size

1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60
2.80
3.00

2-CBRO.5-15L/0-7H 1-CBRO.0-7H 1-CBRO.5-15L

R
el

at
iv

e 
A

vg
. W

rit
e 

Th
ro

ug
hp

ut Analytical
16 HDDs,   64 KiB writes

16 HDDs,  128 KiB writes
16 HDDs,  256 KiB writes
16 HDDs, 1024 KiB writes

(b) Larger Request Size

Figure 15: Average throughput of random single block writes with varying request size in different CBRO
setups relative to pure HDD RAID-5/6.

The relative throughput of random single block writes is
shown in Fig. 15. First, we look at the results for small ran-
dom writes in Fig. 15(a). The relative throughput of each
CBRO setup is very close to the analytical speedup values,
which are 2 in case of one erasure code (1-CBRO) and 3
for two erasure codes (2-CBRO). Next, we consider the re-
sults for larger random writes shown in Fig. 15(b). Looking
at the results reveals that for a request size of 64 KiB the
throughput of each CBRO setup is very close to the analyt-
ical speedup value, which is 2 in case of one erasure code
(1-CBRO) and 3 for two erasure codes (2-CBRO). However,
for random writes comprising 256 KiB and 1, 024 KiB the
analytical speedup values were not reached despite the fact
that we used CDA setups with the highest number of SSDs
and degree of OP (48%), which are according to our scal-
ability results in Sect. 6.4.1 able to cope with the RMW
requests from 16 HDDs (cf. Fig. 14(b)). In order to examine
the reduction of the relative throughput for random writes
above 64 KiB in greater detail, we also conducted measure-
ments for 128 KiB. Looking at the results for 128 KiB in
Fig. 15(b) indicates that the speedup values in case of 1-
CBRO setups coincide with the analysis, while in case of
the 2-CBRO setup the speedup is only 2.5 instead of 3.0.

In order to find the cause for the throughput discrepancy,
we tracked the utilization of the HDDs (data drives) and
all drives within the CDAs, which is reported by the fio
benchmark averaged over the whole throughput measure-
ment duration and based on the I/O statistics reported by
the Linux kernel. The utilization values indicate that nei-
ther the SSDs deployed CDA nor the HDDs were saturated,
thus, the throughput is not limited by the HDDs or SSDs.
Next, we examined the CPU utilization of the tasks related
to the fio benchmark and MD RAID 4/5/6 driver. None of
the tasks belonging to the fio benchmark saturated a CPU
core, thus, we exclude fio as reason. Contrarily, in case of
the 2-CBRO the corresponding RAID driver task saturated
a CPU core for 128 KiB requests representing a bottleneck.

Distributing the processing of random writes to multiple
threads (Sect. 6.1) on different CPU cores did not result in a
higher throughput. Similarly, for random writes comprising
256 KiB and 1, 024 KiB, using multiple threads (scheduled
to different CPU cores) for random write processing also
did not help increasing the throughput. However, this can
be partially attributed to the maximum stripe buffer size
of 32, 768 (which is the number of 4 KiB memory pages)
that is reached at a request size of 256 KiB (corresponding
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Figure 16: Average random write throughput of dif-
ferent CBRO setups relative to pure HDD RAID-
5/6 for requests between 512 bytes and 128 KiB.

to 64 memory pages) in combination with a queue depth of
512. Nevertheless, despite the insufficient stripe buffer size,
the MD RAID 4/5/6 driver apparently suffers from a write
performance issue for larger requests that deserves further
investigation because this prevents reaching the predicted
random write throughput of CBRO.

After investigating the throughput increase (due to CBRO)
for random writes of particular request size while writing
whole data blocks (which was also the case in our previ-
ous work on CBRO [12]), we examine the benefit of CBRO
for workloads that comprise random writes of different sizes
and, where a logical random write can also affect data blocks
only partially. For this purpose we use a mixed workload
that consists of 500, 000 logical writes each having a ran-
domly chosen starting address (aligned to sector boundaries)
and a randomly chosen request size between 1 sector (512
bytes) and 256 sectors (128 KiB). Please note that we do not
consider larger requests due to the performance issues with
the MD RAID 4/5/6 driver. However, in order to achieve
that logical writes end up in an RMW (otherwise CBRO
would yield very little benefit compared to an RMW), we set
the stripe unit size for the data HDDs to 1, 024 KiB mak-
ing an RCW quite unlikely because RMWs occur for logical
writes that affect up to d 18−2·1

2
e−1 = 7 in case of k = 1 and

up to d 18−2·2
2
e − 1 = 6 data blocks within a stripe in case

of k = 2, respectively. Looking at the analytical and mea-
sured results shown in Fig. 16 indicates that the measured
random write throughput coincides with our analysis. As a
consequence, heterogeneous drive arrays comprising HDDs
as data drives and SSDs as CDAs benefit from CBRO also
when logical random writes cover data blocks only partially
but as long as they end up in an RMW.
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Figure 17: Average SSD write amplification in CDA
setups for small writes on varying over-provisioning.

6.4.3 SSD Write Endurance
The SSD write endurance has a large impact on the hard-
ware costs of a CBRO setup and, thus, its cost-benefit ratio.
However, the write endurance is determined by the techno-
logical properties of the used flash memory, and the WA.
In our testbed, the technological properties are laid down
by the used SSD model. As a result, the write endurance
will be primarily determined by the amount of WA which
depends very much on the degree of OP [7, 11], but also on
the write request size. The dependency of the WA to the
write request size stems from the fact that larger requests
will invalidate more flash pages at a time, hence, the GC
has to relocate less flash pages with valid data before block
erasure, resulting in a lower WA.

In order to assess the SSD write endurance, we have de-
termined the WA experimentally depending on the degree
of OP. For this, the amount of P/E cycles performed by
each SSD (SMART attribute 177 Wear Leveling Count [22,
Ch. 7]) was compared before and after performing an amount
of RMW requests (with a particular size) to a CDA that cor-
responds to the size of its physical flash capacity. However,
since random writes of 64 KiB, 256 KiB, and 1024 KiB im-
pose only a barely measurable WA of up to 0.15 (64 KiB
random writes), we focus in the following on small random
writes, i.e., 4 KiB, 8 KiB, and 16 KiB. The resulting WA
values (averaged over all data SSDs in a CDA) for small
random writes are depicted in Fig. 17.

The results in Fig. 17 show that the average WA for 4 KiB
requests is about twice as high as for 8 KiB and 16 KiB re-
quests, regardless of the degree of OP. This is attributed to
the fact that the used Samsung 830 SSDs have an effective
flash page size of 8 KiB. As a result, a random write of 4 KiB
incurs writing a whole flash page comprising 8 KiB dou-
bling the WA. Additionally, the results indicate that WA is
roughly inversely proportional to the degree of OP, whereby
the proportionality factor depends on request size and CDA
setup. For example, with 9% OP the WA amounts 23−24 for
4 KiB requests and 8−11 for 8 KiB/16 KiB requests, respec-
tively. Increasing the degree of OP to 27% results in a WA
of about 5 for 4 KiB requests and 2 − 3 for 8 KiB/16 KiB
requests, respectively. Furthermore, by increasing the de-
gree of OP to 40% (cf. Fig. 17), the WA can be reduced

below 2 for 8 KiB/16 KiB requests. Similar to the benefit
of a reasonable degree of OP (27%) for CDA performance
(cf. Sect. 6.4.1), a significant SSD write endurance increase
can be achieved at acceptable expense (adding one SSD for
each four in a CDA). The write endurance per SSD in TBW
(terabytes written) results from the drive capacity, measured
WA, and manufacturer’s endurance rating of about 3, 500
P/E cycles (derived from the normalized and raw value of
the SMART attribute). As a result, in case of 4 KiB ran-
dom writes and 27% OP (WA of approx. 5) a single SSD
yields at least 89.6 TBW (SSD-L) and 172.3 TBW (SSD-
H), respectively. This corresponds to about 700 times of the
nominal capacity. However, for mixed workloads comprising
also larger random writes, the TBW values will be notably
higher and the SSDs can be used for a longer time. We il-
lustrate the effect of small (sub-page) random writes on the
write endurance by the following example.

We consider the write endurance of a fully utilized (in terms
of requests) 1-CBRO.0-5H setup with 16 HDDs (1, 600 IOPS)
in face of sub-page random writes comprising 4 KiB, which
represents a worse case due to the high WA. A 1-CBRO.0-5H
setup implies a SSD RAID-0 CDA with 5 SSD-H and 27%
OP. According to our results, the WA is 5.2 in case of 4 KiB
requests. Now we can calculate the time that is necessary
to exhaust the P/E cycles of all SSDs for 4 KiB requests.
Each of the 5 SSD-H comprises (with 27% OP) 67, 108, 864
of 4 KiB blocks. Thus, exhausting the P/E cycles of all

SSDs would take (3,500/5.2)·67,108,864
1,600/5

≈ 141, 154, 462 seconds,

which is about 1, 622 days or around 4.44 years. Please note
that when the P/E cycles of all SSDs are used up, the re-
dundancy provided by the code blocks is lost and not data.
However, in order to re-establish the redundancy all SSDs
in the CDA must be replaced.

7. RELATED WORK
The following overview about related approaches is split into
two parts that correspond to the main contributions of this
article. First, we discuss related work that aims at improv-
ing the random write performance of homogeneous RAID
arrays solely consisting of either HDDs or SSDs. There-
after, we survey those approaches that combine HDDs and
SSDs in heterogeneous drive arrays in order to combine the
advantages of both storage technologies.

Device-Aware Data Striping. The choice of the stripe
unit size in HDD arrays using data striping with erasure
coding was studied by Chen and Lee [3]. They developed a
method to determine the most appropriate stripe unit size
for an HDD RAID-5 with respect to the performance char-
acteristics of the used HDD model, i.e., the average head
positioning time and average data transfer rate. In contrast
to our results for HDDs in Sect. 4.1, Chen and Lee did not
conclude that in larger arrays RMW yields a notably higher
random write throughput than FSWs up to a particular log-
ical random write request size. Besides, Chen and Lee did
not consider HDD arrays using more than one erasure code.

Salmasi et al. [20] examined the impact of the stripe unit size
on the write endurance and performance of SSD RAIDs us-
ing data striping with one erasure code (i.e., parity). Based
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on an analysis of the number of flash pages that have to be
read and written in the event of a logical write depending on
the used stripe unit size, Salmasi et al. conclude that setting
the stripe unit size to the flash page size results in the lowest
number of flash page reads and writes, thus, in the highest
write performance in case of an erasure-coded SSD array.
However, while our analysis for SSDs in Sect. 4.2 leads to
the same conclusion, Salmasi et al. did not consider the case
that logical writes can have a request size smaller than the
flash page size (i.e., sub-page writes). Thus, our analysis
extends the work of Salmasi et al. in this regard.

Code Block Request Offloading. Wacha et al. [31] first
proposed to store code blocks on much faster devices (i.e.,
SSDs). They showed that write penalties are not only mit-
igated, but on the contrary, considerable performance im-
provements are achieved especially for small to medium-
sized random writes. However, as their RAID4S approach
stores all code blocks on a single SSD (cf. [30, Sect. 3.8]),
the usable space on each HDD within the setup is restricted
to the SSD’s capacity which is often much smaller. Hence,
RAID4S setups tend to be uneconomical and of limited use
for many practical applications.

The Splitting Parity Disk-RAID4 (SPD-RAID4) architec-
ture by Pan et al. [19] uses a single erasure code while stor-
ing its code blocks onto a dedicated SSD RAID-0 array and,
thereby, allows to use larger capacities. However, the au-
thors focused only on homogeneous SSD setups while aiming
to improve the random write performance by separating re-
quests to code and data blocks. Furthermore, they neglected
reliability aspects albeit using a potentially large check drive
array without any kind of fault tolerance mechanism.

In our previous work on CBRO [12], we considered both ca-
pacity and reliability by using SSD-based check drive arrays
of arbitrary size for multiple erasure codes and by recursively
applying CBRO to check drive arrays in order to establish
fault tolerance when a larger number of drives is used. How-
ever, we focused on scenarios, where small random writes
comprising a few KiB are dominant. Due to the insight that
the random write throughput of erasure-coded HDD arrays
can be higher in case of RMW compared to RCW and FSW
(depending on the used HDD model and the array configura-
tion), CBRO is also beneficial for random writes comprising
hundreds of KiBs, when using HDDs as data drives. Hence,
this article extends our previous work on CBRO by taking
a broader range of workloads into account.

8. CONCLUSIONS AND FUTURE WORK
Random writes are challenging for most data storage sys-
tems, especially, if erasure coding is used to ensure the re-
liability of the stored data and to maintain availability in
the event of drive failure(s). In this article, we focused on
improving the random write throughput in such data stor-
age systems. We provided an analytical model to predict
the random write throughput of homogeneous erasure-coded
drive arrays, comprising either conventional HDDs or NAND
flash memory SSDs, based on the random write throughout
of a single drive and if a write affects a certain number of
data blocks within a stripe. Based on this model, we de-

scribed a method (denoted as device-aware data striping)
to improve the random write throughput of HDD-only and
SSD-only arrays, which takes the notably different random
access performance characteristics of HDDs and SSDs into
account. This is achieved by adapting the stripe unit size to
the used device type and model in relation to the workload
characteristics. While our recommendations for the stripe
unit size in case of HDDs are limited to certain workload
conditions, this does not apply for our recommendations re-
garding SSDs. However, our experimental evaluation con-
firmed our analysis and the benefits of the proposed recom-
mendations for the stripe unit size.

In addition to this, we extended our previous work on an
organization for heterogeneous drive arrays referred to as
CBRO, where data blocks are accommodated by slower and
code blocks by faster drives, by applying our results for ho-
mogeneous erasure-coded drive arrays to CBRO and by con-
sidering also workloads that are not limited to small random
writes of only a few KiB. Our experimental results show that
CBRO is especially suitable for arrays combining HDDs with
SSDs for small as well as larger random writes that comprise
up to hundreds of KiBs.

We plan to extend our analysis as well as our recommen-
dations for the stripe unit size in case of HDDs in order to
cover a broader range of workloads. Besides, based on our
results for homogeneous and heterogeneous erasure-coded
drive arrays, we want to develop mechanisms that try to
dynamically adapt the data organization to the workload in
order to increase the overall system performance.

9. REFERENCES
[1] F. Chen, D. A. Koufaty, and X. Zhang. Understanding

intrinsic characteristics and system implications of
flash memory based solid state drives. In Proceedings
of the 11th International Joint Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS 2009), pages 181–192, New York, NY,
USA, 2009. ACM.

[2] F. Chen, R. Lee, and X. Zhang. Essential roles of
exploiting internal parallelism of flash memory based
solid state drives in high-speed data processing. In
Proceedings of the 17th IEEE International
Symposium on High Performance Computer
Architecture (HPCA 2011), pages 266–277, Feb 2011.

[3] P. M. Chen and E. K. Lee. Striping in a RAID level 5
disk array. In Proceedings of the ACM Joint
International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS 1995),
pages 136–145, New York, NY, USA, 1995. ACM.

[4] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and
D. A. Patterson. RAID: high-performance, reliable
secondary storage. ACM Computing Surveys,
26(2):145–185, 1994.

[5] HGST, Inc. Ultrastar 15K600 3.5 inch Serial Attached
SCSI (SAS) Hard Disk Drive, Sept. 2012.
https://www.hgst.com/sites/default/files/resources/
US15K600 SAS Spec V2.00.pdf.

[6] W. W. Hsu and A. J. Smith. The real effect of I/O
optimizations and disk improvements. Technical

APPLIED COMPUTING REVIEW  DEC. 2015,  VOL. 15,  NO. 4 51



Report UCB/CSD-03-1263, EECS Department,
University of California, Berkeley, CA, USA, Jul 2003.

[7] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and
R. Pletka. Write amplification analysis in flash-based
solid state drives. In Proceedings of the Israeli
Experimental Systems Conference (SYSTOR 2009),
pages 10:1–10:9, New York, NY, USA, 2009. ACM.

[8] Hynix Semiconductor Inc. 16Gb NAND FLASH
HY27UH08AG5B Data Sheet, Jan. 2008. Rev. 0.2.

[9] Intel Corporation. Intel MD332 NAND Flash Memory
Data Sheet, June 2009. Document Number
319120-004US.

[10] B. L. Jacob, S. W. Ng, and D. T. Wang. Memory
Systems: Cache, DRAM, Disk. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2008.
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ABSTRACT
The swap-before-hibernate (SBH) swaps out all swappable pages 
before the system enters hibernation mode, thus reducing the 
memory used by the system and the size of hibernation file. 
However, when the system resumes, the program must be 
reloaded into the main memory by swap-in; hence, the response 
time of program depends on the swap-in speed.  

This study experimentally proved that the present swap-in/swap-
out mechanism of Linux is not acceptable to the SBH algorithm. 
Moreover, it proposed the method of reordering all the requests to 
be written out to the swap space. The proposed method was 
proven to increase the efficiency of swap space by 1/2 to 1/3.  

CCS Concepts
• Computer systems organization~Embedded software   •
Software and its engineering~Operating systems

Keywords
Quick booting; Android; Linux; Hibernation; Suspend to Drive 

1. INTRODUCTION
Under the advancement of science and technology, flash memory
has become the main-stream storage tool in embedded systems.
As compared to the traditional storage technologies, such as hard
disk, flash memory is featured by small size, shock-proof, low
power consumption, and compatibility with smart devices, such as
digital household appliances, and automotive electronics [1, 2].
The cost performance of flash memory has been improved [3].
Although the access time of flash memory has made great
progress, smart embedded systems, such as Android and iOS,
have become increasingly complex and main memory has become
larger, thus extending the booting time. For smart TV users, the
booting time of 30 seconds is too long [4]. For automobile drivers,
they expect to use back-up collision intervention system and car
navigation system immediately when they ignite cars.
Manufacturers often use suspend-to-RAM (sleep) [5], which is
power-consuming standby, to achieve quick booting time to meet
the user demands. Moreover, mobile embedded systems require

greater battery storage, and smart household appliances cannot 
meet the requirement of green energy. Another commonly used 
technology is suspend-to-drive (hibernation), which can accelerate 
booting time and achieve zero standby power consumption. As 
compared to suspend to RAM, the booting time of suspend-to-
hard-drive is longer.  

Hibernation (suspend-to-drive) [5] refers to a system status during 
operation, including hardware environment state, memory content 
and processor status, which is stored in hibernation file in the non-
violate storage device. The device is powered down to achieve 
zero power consumption. After the system is restarted, the 
hardware device reads hibernation file back to main memory, and 
restores the system to work state before hibernation. The system 
recovery time depends on the size of hibernation file. When more 
system memory is used before hibernation, the recovery time is 
longer. Lo et al. [6] proposed Swap-before-hibernate (SBH), 
which uses flash memory as system's secondary storage. They 
found that the random access time of the flash memory is close to 
sequential access time and the fast random access could reduce 
response time significantly by adopting SBH. 

In SBH, when entering the hibernation mode, the swappable 
memory swap-out to the swap space or the file system. The least 
amount of data was stored in hibernation file. During booting, a 
smaller hibernation file is read back through sequential access of 
the flash memory. After the booting is completed, the system 
swaps in data quickly through superior random access of the flash 
memory, which is closed to the sequential access speed. Thus, the 
booting time depends on the size of hibernation file in sequential 
access, and the response time of a program depends on the 
speed/quantity of swap-in pages in random access. In summary, 
SBH recovery is divided into two stags. The first stage is to read 
hibernation file in the flash memory. After loading hibernation file, 
OS kernel starts to load memory pages of application programs by 
swapping. In loading application programs, OS kernel can find 
that some accessed data are not stored in the main memory. This 
is because that most of data have been swapped out to swap space 
or file system before the system entering hibernation mode, thus 
the system uses swap-in to load data from flash memory. 

This study aims to reorganize/reschedule the data that swap out to 
swap space to shorten the response time of applications after 
resuming from hibernation. Please notice that the OS kernel swaps 
out memory pages individually, while the main memory is 
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insufficient, but the OS kernel generally does not swap out all 
swappable memory. In normal case, as OS kernel only swaps out 
some pages at one time, and only the greedy algorithm can be 
used for optimization. In SBH algorithm, as OS kernel swaps out 
all the memory pages of all processes to the swap space at one 
time, we can reorder swap-out commands according to the 
characteristics of memory pages, so as to optimize the swap space. 

The rest of the paper is organized as follows. In the second section 
we show the motivation. In section 3 we discuss related works. 
The method to enhance performance of swap space is discussed in 
section 4. Section 5 gives experimental results. Section 6 is 
conclusions. 

2. MOTIVATION
Most modern operating systems, such as Android/Linux,
GNU/Linux, UNIX and Windows, use memory management unit
(MMU) to manage memory. The MMU divides main memory
into pages. In most case, the memory pages have the same size
(e.g., 4KB). The operating systems divide these pages into several
categories: (1) Kernel pages: these pages are owned by OS kernel,
and are always stored in the main memory; (2) named pages:
these pages are read from a file and the backing store of the page
is the said file; if the page contents are modified, the OS is
necessary to maintain consistency between the page and the
backing store; (3) anonymous pages: anonymous pages are so
named, because they have no backing store (a named file) in the
file system; most programs request an anonymous page to store
dynamically allocated data (e.g., stack and heap); (4) page cache:
for the purpose of efficiency, the operating system reads several
blocks (e.g., 8 blocks at a time) from file system at a time to
reduce the number of I/O, and these blocks are stored in page
cache. When a program accesses a block in a secondary storage,
OS would first check whether the block is in the page cache. If it
is in the page cache, OS can return the block to the program
without I/O.

When the OS swaps out dirty pages, the data are written in the 
secondary storage to keep consistency. OS adopts different 
mechanisms according to the types of swap-out page. For four 
different pages, the mechanisms adopted by OS are described 
below: (1) kernel pages: OS never swap out kernel pages; (2) 
named pages: the pages are directly swapped out without I/O if 
these pages are clean pages; if dirty pages are found, release is 
made after these file pages are written back in the file system; (3) 
anonymous pages: except for dirty pages written in swap-space, 
the other steps are identical with named pages; (4) page cache: the 
pages are directly released.  

In SBH execution, the size of hibernation file is an important 
factor affecting the resuming efficiency. To minimize the size of 
hibernation file, SBH swaps out all swappable pages to reduce the 
consumption of memory. It is because that as the consumption of 
memory is proportional to the size of hibernation file and 
decreasing the memory consumption reduces the size of 
hibernation file. After the system resumption, OS finds that some 
pages are not in the main memory because all the swappable 
pages are swapped out before the hibernation mode. When a 
program accesses these pages that are not in the main memory, 
OS reloads these memory pages from the flash memory into the 
main memory. In order to increase the I/O efficiency, when OS 
reads the page, it reads several blocks (/pages) nearby the said 

block (/page) in the main memory (i.e., page cache). As the 
temporal locality and spatial locality the mechanism has a good 
hit ratio, it is a type of prefetch mechanism. Many studies have 
proposed effective methods of improving prefetch based on the 
file system behavior. This paper highlights the efficiency 
optimization of prefetch of swap space after SBH.  

The swap-out behavior of SBH is different from the normal swap-
out behavior of OS. The normal swap-out occurs when the 
memory is insufficient. According to the quantity of insufficient 
memory, OS generates the corresponding swap-out quantity. Thus, 
the quantity of pages written out is not large in each swap-out. 
The SBH writes out all swappable pages before the system enters 
the hibernation mode. Except for OS kernel, the other pages are 
almost all swappable pages, so the quantity of pages written out 
by SBH is very large. These pages can be reordered according to 
their characteristics written out by SBH, so as to maximize the 
efficiency of prefetch. 

Figure 1: cumulative statistics of total swap I/O and memory 
consumption 

“Temple Run”, a popular Android app, is used to demonstrate the 
possibility of improving efficiency of swap space by 
reordering requests of swap-outs. In Figure 1, the horizontal 
axis represents the time after booting, and the vertical axis 
represents the cumulative statistics of total swap I/O and 
memory consumption of Temple Run. The green line is the 
accumulated amount of used memory of Temple Run. At time 
point 0, the memory amount used by Temple Run is very 
small. It is because that the SBH writes out all swappable 
pages before the hibernation mode. After the resuming, Temple 
Run accesses memory and these accesses trigger swap-in. Let us 
take Android/Linux as an example. In each swap-in, Linux reads 
in 8 consecutive pages (/blocks). One swap-in I/O lets OS prefetch 
7 blocks/pages to the page cache. The red line in the figure is the 
quantity of data that the system reads in (including all pages 
bring in by a swap-in). It can be seen that the system reads a 
large quantity of data within five seconds after booting. The 
finding showed that the only 50% (“Memory used” divided by 
“Total Swap I/O”) of total I/O (including fetching the said block/
page and prefetching) contributes the performance of swap 
space. This study proposes a method to improve the hit ratio of 
prefetch, so as to shorten the response time of each application 
after booting. 
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3. RELATED WORK
Many fast booting methods [11-13] have been proposed, which
are able to accelerate the booting time by reordering the execution
flow, lazy loading system modules, and removing some
unnecessary booting steps [13]. Chrome OS [11] removes many
repeated booting steps of the system to speed up booting. The
hibernation/resuming technology [6, 12, 14, 15] is also used to
accelerate booting. These methods can be used to skip the
complicated system initialization process by restoring the system
to the last system state.

Lo et al.[6] proposed two features, “system working memory is 
much smaller than the system's total memory [16]”, and “random 
access speed of flash memories is close to sequential access speed 
[17]”, which can be used to develop a fast booting/resuming 
methods. Extremely small hibernation file is retrieved through 
sequential access of flash memory to accelerate booting time. 
However, the disadvantage is that the OS issues a large quantity 
of swap-in requests to load the working set of a running program. 
These swap-in requests would prolong the response time of a 
program. 

Microsoft developed fast booting for Windows 8 [18], which is 
similar to the fast booting proposed by Lo et al.[6]. Before the 
system enters the hibernation mode, the memory used by the users 
is abandoned, and only the memory of kernel and system services 
is stored in the hibernation file. After booting, the login screen 
directly appears, and users have to restart the software programs. 
As compared to fast booting method proposed by Lo et al.[6], the 
main disadvantage is that the method cannot shorten the starting 
time of software programs. 

Microsoft also developed ReadyDrive and ReadyBoost [19] for 
Windows Vista. The technology is based on the assumption that 
random access speed of flash memory is faster than that of the 
hard drive. ReadyDrive stores all data needed for booting in flash 
memory. During booting, the system uses flash memory to read 
needed data quickly to accelerate booting. On the other hand, 
ReadyBoost uses flash memory as a hard disk cache, in order to 
accelerate the loading of application programs after booting.  

Literatures [20-22] suggested that flash memory has become 
popular in the recent years, which access characteristics differ 
from those of the traditional hard disks. If the system uses flash 
memory as the secondary storage, especially as a swap space, the 
access policy and mechanisms should be adjusted so as to meet 
the characteristics of flash memory. That finding contributed to 
improving the swap system, and the proposed method can 
effectively reduce the frequency of erasing the flash memory. 

4. SYSTEM ARCHITECTURE AND
METHODS 
The proposed swap-space algorithm must satisfy the following 
objectives. The first objective is to optimize the loading time of 
each process after resuming. This is because the OS does not 
know the program that the user will execute after the computer 
has resumed. The second objective is to arrange these pages 
according to the time that a program may access them. Besides 
predicting whether the pages would be used again, they should be 
arranged according to the sequence of use. Thus, the time 
difference between the time point when the page/block is 
prefetched (time a) and the time point when the page/block is used 

(time b) can be shortened (i.e. shortening the time difference 
between time points a and b). The prefetched page is prevented 
from being discarded from the cached page for being in page 
cache too long. Therefore, arranging these pages according to the 
time correlation can increase the hit ratio. The third objective is 
that the designed method must be efficient. The proposed method 
cannot sacrifice user experience (i.e., execution speed of a 
program) to improve the response time after resuming. The fourth 
objective is the limited use of the memory, because the algorithm 
is executed in OS kernel, unlike the user mode program that has 
huge virtual memory.  

Based on the above conditions, the first step of our algorithm is 
described below. After resume, whenever the program has a page 
fault, the logical block address (LBA) of a block that the OS reads 
in is recorded in an ordered list of each program. This ordered list 
is called page fault list (PFL). The PFL records the information of 
page/block that each process swap-in, as well as the sequence of 
swap-in. Notice that the OS kernel would minimize the number of 
page fault and our algorithm is executed only if there is a page 
fault, so the influence on user mode program is very slight. PFL of 
each process can be recorded in the file system, so the use of 
kernel memory can be minimized.  

The second step is executed when the system enters the 
hibernation mode. The SBH writes out all the swappable pages in 
the system via block I/O subsystem to the flash memory. The 
block I/O subsystem is modified, so that the swappable pages are 
not written in the swap space directly. These pages to be written 
out by the block I/O subsystem are kept in a waiting queue 
temporarily. When the SBH moves all swappable pages into the 
waiting queue, all the swappable pages in this queue are first 
sequenced according to the process id of each page, then 
according to the order of the page in the PFL. Finally, the 
sequenced swappable pages are written out to the swap space. 
Therefore, the pages of each program are ordered according to the 
read-in sequence after the latest resume of each program.  

After the system resumes, if a page fault occurs and the 
page/block is read in from the flash memory, the OS reads in 
several consecutive pages at one time. These additionally read-in 
pages are stored in the page cache temporarily. This is a prefetch 
mechanism of OS kernel for swap space. Based on our algorithm, 
these consecutively read-in pages have high correlation. If these 
programs have similar memory access behaviors after each 
resume, this algorithm can increase the hit ratio of prefetch 
effectively. 

Figure 2.a: memory accessed of Temple Run 
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Figure 2.b: memory accessed of Temple Run 

Figure 2.c: memory accessed of Temple Run 

Figure 2.d: memory accessed of Temple Run 

Figure 2.a-2.d shows the memory access behavior of the "Temple 
Run" app. The horizontal axis represents the time coordinate, zero 
represents the resume completion time, and the vertical axis 
represents the memory address. As shown in Figure 2, the 
memory access behaviors are very similar in the execution 
process after four times of resume of Temple Run. This proves 
that our algorithm can increase the performance effectively. The 
improvement of performance is discussed in the next section.  

5. EXPERIMENTAL RESULTS
Android was used as operating environment for the experiment.
Linux 2.6.32 and Android 2.2 were used. The hardware platform
was Beagleboard-XM, and the CPU was ARM Cortex A8 with
512MB memory. The read/write characteristics of the flash
memory for the experiment are shown in Table 1. As seen, when
the data volume read/written each time is large, the reading speed

is high. When the read/written data volume exceeds 64KB, the 
reading/writing speed approaches to fixed values (20.29MB/s and 
12.8MB/s respectively). 

Table 1: Transcend microSDHC 8G class 10 (MB/s) 
4K 32K 64K 128K 256K 

Read 5.03 15.57 20.29s 20.29s 20.35 

Write 2.69 5.44 12.8 12.34 12.54 

The function do_swap_page () of Linux kernel was modified, and 
all swap-in and swap-out in the kernel were recorded. Three 
applications were executed in the experiment, including Temple 
Run (Gaming), Gallery (performing a slide show) and Adobe PDF 
Reader (reading a PDF file). The three applications represent the 
three main application types in Android, which are game, image 
processing and office software. Three prefetch sizes were tested, 
including 8 pages (32KB), 16 pages (64KB) and 32 pages 
(128KB). The Linux preset prefetch size was 8 pages (32KB). 
However, in terms of the microSD for the experimental 
environment, 16 pages (64KB) were likely to perform the 
hardware performance.  

The performance data measured included the hit ratio of page 
cache, the data volume read by OS kernel in the swap space, the 
number of major faults in the execution of applications, and the 
total I/O time. Figure 3 shows the four performance indexes. 
When the program fails to access memory, there is a page fault. 
The OS kernel checks whether the page has been in the page 
cache. If yes, it is a hit. The probability of hit is called hit ratio. If 
it is not in the page cache, Linux must read back this page in the 
flash memory. Such a page fault is called major fault. Therefore, 
the number of times that a major fault has occurred is the number 
of times that the Linux kernel has read the swap space. Figure 3 
shows the major fault, and OS kernel must read back the dark 
gray data (the data that the said program accessed). Considering 
efficiency, Linux kernel prefetches the light gray data. The Linux 
kernel adopted in the experiment optimizes the flash memory, so 
the prefetched data are aligned with 32KB automatically. Linux 
puts the prefetched data in the page cache to increase the hit ratio. 
The I/O time is the time spent by Linux kernel on reading dark 
gray data and light gray data. 

Figure 3: page fault handling of Linux 
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Figures 4~6 show the experimental results. The suspend/resume 
action was performed 10 times continuously for each experiment, 
so as to obtain more accurate data. The four methods were 
compared in each experiment. The “w/o ordering” used the preset 
swap space management style of Linux kernel, and the Linux 
preset prefetch size was 8 pages (32KB). “with ordering-8~32” 
uses our algorithm and different prefetch sizes (32KB~128KB). 
Take Temple Run as an example, the hit ratio increased from 60% 
to 90%, suggesting that the proposed method can avoid 
prefetching unnecessary data. The total swap I/O was improved 
by one third, and the improvement was mainly derived from an 
increased hit ratio. The total swap I/O increased slightly with the 
prefetch size. The quantity of major faults was improved 
considerably as the prefetch size increased. It is because that when 
the prefetch size increased from 32KB to 128KB, the hit ratio did 
not reduce significantly. The I/O time decreased from 3 seconds 
on average to 1.5 seconds, suggesting that the proposed method 
can reduce the response time of applications by half. The best 
performance of I/O time occurred in “with ordering-16 (64K)”. As 
shown in Table 1, it is because that the reading speeds of the 
microSD used for 64KB and 128KB are almost identical. Figure 5 
and Figure 6 have similar results. The I/O time was improved by 
about 1/3. 

Figure 4.a: Temple run – Hit ratio 

Figure 4.b: Temple run – Amount of Total Swap I/O 

Figure 4.c: Temple run – Major Fault 

Figure 4.d: Temple run – I/O time 

Figure 5.a: Gallery – Hit ratio 

Figure 5.b: Gallery – Amount of Total Swap I/O 
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Figure 5.c: Gallery – Major fault 

Figure 5.d: Gallery – I/O time 

Figure 6.a: Adobe PDF Reader – Hit ratio 

Figure 6.b: Adobe PDF Reader – Amount of Total I/O 

Figure 6.c: Adobe PDF Reader – Major fault 

Figure 6.d: Adobe PDF Reader – I/O time 

6. CONCLUSIONS
Swap-before-Hibernate (SBH) can shorten the resume time of 
system, but the OS should swap in necessary data before 
continuing an application. This study found that the present 
swapping mechanism used by Linux is not suitable to SBH 
method. All the data to be written in the swap space were written 
out according to the sequence of use. The experimental results 
showed that the proposed method can reduce the I/O time by one 
third to one half. Therefore, the response time of applications after 
resuming was improved effectively. 
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