

Applied Computing Review

Dec. 2013, Vol. 13, No. 4

Frontmatter

Editors 3
SIGAPP FY’13 Quarterly Report S. Shin 4
A Message from the Editor S. Shin 5
SAC 2014 Progress Highlights H. Haddad 6

Invited Paper

Migration-based Hybrid Cache Design for File Systems over
Flash Storage Devices

 P. Huang, Y. Chang, C. Tsao,
M. Yang, and C. Hsieh

 8

Selected Research Articles

SimPal – A Design Study on a Framework for Flexible Safety-
Critical Software Development

 J. Notander, P. Runeson, and
M. Höst

 17

Genealogical Insights into the Facts and Fictions of Clone
Removal

 M. Zibran, R. Saha, C. Roy,
and K. Schneider

 30

A Boosted SVM based Ensemble Classifier for Sentiment
Analysis of Online Reviews

 A. Sharma and S. Dey 43

Aspect-driven, Data-reflective and Context-aware User
Interfaces Design

 T. Cerny, K. Cemus, M.
Donahoo, and E. Song

 53

In Situ Affect Detection in Mobile Devices: A Multimodal
Approach for Advertisement Using Social Network

 M. Adibuzzaman, N. Jain, N.
Steinhafel, M. Haque, F.
Ahmed, S. Ahamed, and R.
Love

 67

Applied Computing Review

Editor in Chief Sung Y. Shin

Designer/Technical Editor John Kim

Associate Editors Hisham Haddad
 Jiman Hong
 Tei-Wei Kuo
 Michael Schumacher

Editorial Board Members

Richard Chbeir
Mir Abolfazl Mostafavi
Ki-Joune Li
Kokou Yetongnon
Dan Tulpan
Paola Lecca
Mathew Palakal
Umesh Bellur
Rajiv Ramnath
S D Madhu Kumar
Agostinho Rosa
Yin-Fu Huang
Mirko Viroli
Gabriella Castelli
Jose Luis Fernandez
Rui P. Rocha
Matthew E. Taylor
Rachid Anane
David Parker
Stefano Bistarelli
Eric Monfroy
Barry O'Sullivan
Karl M. Goeschka
Rui Oliveira
Peter Pietzuch
Giovanni Russello
Hasan Jamil
Raymond Wong
Pedro Rodrigues
Albert Bifet
Shonali Krishnaswamy
João Gama

Junping Sun
Ramzi A. Haraty
Apostolos Papadopoulos
Federico Divina
Raúl Giráldez Rojo
Artur Caetano
Rogério Carvalho
Maria-Eugenia Iacob
Rafael Accorsi
Alessio Bechini
Cosimo Antonio Prete
Gloria Bordogna
Gabriella Pasi
Hong Va Leong
Alvin Chan
Maria da Graça C. Pimentel
Takayuki Itoh
Rudinei Goularte
Mario Freire
Marilia Curado
Manuela Pereira
Teresa Vazão
Davide Ancona
Tei-Wei Kuo
Seongwon Lee
Marjan Mernik
Barrett Bryant
Emiliano Tramontana
Corrado Santoro
Yvonne Coady
Maria Lencastre
Denis Wolf

Fernando S. Osorio
Luiz Chaimowicz
Prasenjit Mitra
Lior Rokach
Yehuda Koren
Antonio Bucchiarone
Raffaela Mirandola
Patrizia Scandurra
W. Eric Wong
Chang Oan Sung
John Kim
Giampaolo Bella
Helge Janicke
Alessandro Sorniotti
Somayeh Malakuti
Wolfgang Lohmann
Mehmet Aksit
Gail-Joon Ahn
Dongwan Shin
Ivan Lanese
Manuel Mazzara
Fabrizio Montesi
Jun Pang
Mohammad Reza Mousavi
Hyoil Han
Anabela Simões
Markus Zanker
Jean-Marc Seigneur
Davide Rossi
Angelo Di Iorio
Stefano Zacchiroli

SIGAPP FY’13 Quarterly Report

October 2013 – December 2013
Sung Shin

Mission

To further the interests of the computing professionals engaged in the development of new computing
applications and to transfer the capabilities of computing technology to new problem domains.

Officers

 Chair Sung Shin
 South Dakota State University, USA
 Vice Chair Jiman Hong
 Soongsil University, South Korea
 Secretary Michael Schumacher
 University of Applied Sciences Western Switzerland, Switzerland
 Treasurer Tei-Wei Kuo
 National Taiwan University, Taiwan
 Webmaster Hisham Haddad
 Kennesaw State University, USA
 Program Coordinator Irene Frawley
 ACM HQ, USA

Notice to Contributing Authors

By submitting your article for distribution in this Special Interest Group publication, you hereby grant to ACM
the following non-exclusive, perpetual, worldwide rights:

• to publish in print on condition of acceptance by the editor
• to digitize and post your article in the electronic version of this publication
• to include the article in the ACM Digital Library and in any Digital Library related services
• to allow users to make a personal copy of the article for noncommercial, educational or research purposes

However, as a contributing author, you retain copyright to your article and ACM will refer requests for
republication directly to you.

A Message from the Editor

I am happy to release the winter issue of Applied Computing Review. This issue includes one invited paper, two
selected papers presented at the 2013 ACM Symposium on Applied Computing (SAC), and three from the 2013
ACM Research in Adaptive and Convergent Systems (RACS). RACS’13 was held in Montreal, Canada, and it
successfully provided a professional forum to share novel ideas within the areas of adaptive and convergent
computing systems. The selected papers have been reviewed, revised, and expanded for inclusion in ACR, and I
can proudly tell you that each and every one of them maintains high quality.

Our goal is to provide you with a platform for sharing innovative thoughts among professionals in various fields
of applied computing. We have provided excellent service to various technical communities and to the scientific
computing society in a productive manner. In addition, we are working with the ACM SIG Governing Board to
further expand SIGAPP by increasing membership and developing a new journal on applied computing in the
near future.

I would like to take this opportunity to announce that the fifth international conference on Future Energy Systems
(ACM e-Energy) will be held in Cambridge, UK next year. More information about e-Energy can be found below.
Finally, once again, I would like to remind you of the 29th SAC which will be held in Gyeongju, South Korea,
from March 24th to 28th, 2014. As we did for the first time in the previous year, SAC’14 will also offer students
an opportunity through the Student Research Competition (SRC) program to meet with scientific researchers in
the world. Please join us and make SAC’14 a great success. Your kind support and cooperation would be highly
appreciated. Merry Christmas and Happy New Year! Thank you.

Sincerely,

Sung Shin
Editor in Chief & Chair of ACM SIGAPP

ACM e-Energy

SIGCOMM is sponsoring a conference on the intersection of IT and energy called e-Energy. It focuses on the
areas of computing and communication for smart energy systems as well as energy-efficient computing and
communication systems. The conference will be held in Cambridge, UK, from June 11th to 13th, 2014. Details
about the conference can be found at http://conferences.sigcomm.org/eenergy/2014/.

Next Issue

The planned release for the next issue of ACR is March 2014.

http://conferences.sigcomm.org/eenergy/2014/

SAC 2014 Progress Highlights

The 29th annual edition of the ACM Symposium on Applied Computing (SAC) will be held in the historic capital
city of Gyeongju, Korea, Monday March 24 to Friday March 28, 2014, on the campus of Dongguk University.
The Tutorials Program is planned for Monday; the Technical Program for Tuesday through Friday; the Student
Research Competition (SRC) Program for Tuesday (display session) and Wednesday (presentations session),
respectively; and the Posters Program for Thursday.

SAC 2014 has received 913 submissions, from 50 countries. To date and after completing the review process, 223
papers were accepted, giving the conference an acceptance rate of 24.42%. In addition, approximately 100
posters were invited for participation in the Posters Program. These posters went through the review process as
papers. The SRC Program received 20 submissions. After being reviewed by the respected track committees, it is
anticipated that 14 student research abstracts will participate in the SRC Program. The accepted abstracts will
compete for three cash prizes ($500, $300, and $200) and winners will be recognized during the banquet event.
The first place winner can proceed to the National ACM SRC program. Furthermore, 6 tutorials were reviewed by
the organizing committee and invited to participate in the Tutorials Programs. The details are posted on the
conference website.

Track Submissions Accepted
Papers # Track Submissions Accepted

Papers
1 BHI 18 5 22 NET 20 5
2 CC 17 5 23 OS 47 10
3 CIVIA 11 3 24 PL 19 7
4 CM 9 3 25 PSC 3 2
5 COSYS 8 2 26 RE 19 5
6 CSP 7 0 27 RS 23 6
7 DADS 16 5 28 SATTA 12 4
8 DM 33 10 29 SE 63 16
9 DS 14 4 30 SEC 38 8
10 DTTA 25 8 31 SEGC 9 4
11 EC 9 2 32 SGST 40 5
12 EE 24 7 33 SOAP 14 4
13 EMBS 19 5 34 SONAMA 54 11
14 HC 33 5 35 ST 20 0
15 HCI 21 4 36 SVT 33 8
16 IAR 21 5 37 SWA 18 6
17 IIF 7 2 38 TRECK 13 5
18 IILE 15 4 39 UIG 8 2
19 MCA 27 8 40 WCN 37 9
20 MMV 33 8 41 WT 14 5
21 MP 43 5

The planning is underway. Hotel information (Hilton Gyeongju) is posted on the conference website along with
the reservation form for special rates. The organizing committee recommends attendees to book their reservations
at the designed hotel while the rooms are available. January 31, 2014 is the deadlines for the special rate. The
conference will provide shuttle service between the conference venue and the Hilton hotel. Detailed shuttle
schedule will be posted on the website. Other travel and transportation information is also posted.

The registration system is now open for authors and attendees. Included in the registration fee, SAC will provide
daily lunches, coffee breaks, a reception on Tuesday, and a banquet dinner on Thursday. The reception and

banquet dinner will be held at the Hilton hotel. In addition, the local committee is organizing a number of
excursions. Details are posted on the conference website.

Country Submissions # Country Submissions
1 Afghanistan 1 26 Kenya 5
2 Algeria 2 27 Korea 67
3 Australia 10 28 Lebanon 2
4 Austria 11 29 Luxembourg 4
5 Belgium 11 30 Mexico 1
6 Brazil 206 31 Netherlands 20
7 Canada 55 32 Pakistan 3
8 Chile 1 33 Peru 1
9 China 77 34 Poland 5
10 Colombia 2 35 Portugal 23
11 Czech Republic 2 36 Saudi Arabia 2
12 Denmark 3 37 Senegal 1
13 Egypt 1 38 Singapore 9
14 Estonia 2 39 Slovenia 1
15 Ethiopia 1 40 Spain 12
16 Finland 7 41 Sweden 9
17 France 43 42 Switzerland 6
18 Germany 35 43 Syria 1
19 Hong Kong 3 44 Taiwan 29
20 India 50 45 Tunisia 7
21 Iran 1 46 Turkey 4
22 Ireland 2 47 UK 23
23 Italy 18 48 USA 61
24 Japan 44 49 Uruguay 2
25 Jordan 2 50 Viet Nam 3

The Steering and Organizing committees are pleased to have SAC 2014 in the historic city of Gyeongju. We
invite you to join us this March, meet other attendees, enjoy the conference programs, and have a pleasant stay in
Gyeongju and Korea. We hope to see you there.

On Behalf of SAC Steering Committee,

Hisham Haddad
Member of the Steering Committee
Member of SAC 2014 Organizing Committee

Migration-based Hybrid Cache Design for File Systems
over Flash Storage Devices

Po-Chun Huang
Institute of Information

Science, Academia Sinica
Taipei, Taiwan (R.O.C.)

pchuang.19840320@
gmail.com

Yuan-Hao Chang
Institute of Information

Science, Academia Sinica
Taipei, Taiwan (R.O.C.)

johnson@iis.sinica.edu.tw

Che-Wei Tsao
Dept. of Computer Science

and Information Engineering,
National Taiwan University

Taipei, Taiwan (R.O.C.)

bearman.sky@gmail.com

Ming-Chang Yang
Graduate Institute of

Networking and Multimedia,
National Taiwan University

Taipei, Taiwan (R.O.C.)

riddle216@gmail.com

Cheng-Kang Hsieh
Center for Embedded

Networked Sensing (CENS),
University of California,
Los Angeles, CA, USA

changun.tw@gmail.com

ABSTRACT

This work is motivated by the urgent need to enhance the
reliability of file systems in battery-powered mobile com-
puting systems and consumer electronics that utilize flash
storage devices for data storage. In this paper, we use non-
volatile RAM (NVRAM) in the cache design because of
its non-volatility and random byte addressability properties.
Specifically, we propose a migration-based caching strategy
that exploits NVRAM to enhance the reliability of file sys-
tems and to improve the access performance by utilizing the
localities of accesses and the characteristics of flash stor-
age devices. Our experimental results demonstrate that the
proposed strategy can significantly improve the performance
and reliability of file systems in flash storage devices.1

Categories and Subject Descriptors

B.3.2 [Design Styles]: Cache memories; B.3.2 [Design
Styles]: Mass storage (e.g., magnetic, optical, RAID)

General Terms

Design, Management, Performance, Reliability.

Keywords

Non-volatile RAM (NVRAM), flash memory, hybrid cache,
file system.

1. INTRODUCTION
Flash storage devices (e.g., SD flash cards, eMMC and solid-
state drives (SSDs)) are widely used to store data in mo-
bile computing systems and consumer electronics (e.g., light-
weight notebooks, smart phones, and digital cameras or cam-
corders). They have a number of desirable features, such as
low power consumption, shock-resistance, and small size [1].
However, most file systems and cache systems are designed
for traditional hard disk drives, and the characteristics of

1Copyright is held by the authors. This work is based on an
earlier work: Proceedings of the 2009 International Work-
shop on Software Support for Portable Storage.

flash storage devices are not considered. For example, cache
systems usually store data in the dynamic random access
memory (DRAM) without considering the features of flash
storage devices, so cached dirty data could be lost if the
system crashes or power is lost. In addition, flash stor-
age devices do not perform well in writing small random
data. Leading semiconductor companies have announced the
development of next-generation storage media called non-
volatile RAM (NVRAM), e.g., phase-change RAM (PCRAM)
and ferroelectric RAM (FeRAM) [18], which are byte-address-
able; however, they are not cost-effective compared to DRAM
and NAND flash memory. These observations motivate us
to propose a cache design that enhances the performance
and reliability of file systems in flash storage devices by ex-
ploiting NVRAM, while also considering the cost issue.

A flash storage device might be comprised of multiple NAND
flash chips with a multi-channel architecture. A NAND flash
chip consists of one or more sub-chips, each of which con-
tains many blocks. A block has a fixed number of pages,
and is the unit for erase operations, while a page is the unit
for read-write operations. Because of the “write-once prop-
erty,” a page cannot be overwritten unless its residing block
is erased. To enhance the access performance, the“out-place
update”strategy is used to write data to free pages. Address
translation is thus needed to map the logical addresses of the
data to their corresponding physical addresses. If there is
insufficient free space, the garbage collection function is ac-
tivated to reclaim pages containing old data by erasing their
residing blocks. Before a block is erased, all the pages with
up-to-date data should be copied to free pages. This process
is called“live-page copying.” The block erasure and live-page
copying operations cause serious performance degradation.
As each block can only endure a limited number of erase
cycles, “wear-leveling” is performed to distribute block era-
sures evenly so as to prevent wearing out some flash blocks
prematurely.

Due to cost considerations, various address translation sche-
mes have been proposed to reduce the main-memory space
required by the translation information; however, most of
the schemes do not perform well on small random writes

(compared to sequential writes) [5, 12, 21, 32]. Some native
file systems for raw flash-memory media have been developed
to better utilize the characteristics of the flash memory [7,
22, 24, 31]. A number of researchers have also considered
how to improve the performance of NAND flash memory
with a RAM cache, e.g., [20, 23, 27], and how to exploit
energy-aware technologies and data compression to improve
flash-memory storage systems, e.g., [4, 10, 13, 15]. Due to
the significant performance impacts of flash memory man-
agement on file accesses, there are also proposals on the co-
operative layered designs of flash memory management and
file management, such as in [16]. Recently, NVRAM has
been adopted as the cache to enhance the performance and
reliability of flash storage devices [17] and native flash file
systems [8, 19]. It has also been suggested that NVRAM
could be used as the write cache for the metadata (i.e., the
system information and file attributes) of general-purpose
file systems [9]. On the other hand, hybrid storage archi-
tectures with NVRAM and hard disk/flash memory are sug-
gested to greatly enhance the access performance by redi-
recting access requests of different patterns to NVRAM and
hard disk/flash memory [28, 30]. However, there has been
little work devoted on exploiting NVRAM to enhance the
reliability of file systems in order to protect both metadata
and userdata (i.e., the content of files), or to improve the
performance of file systems by considering the characteris-
tics of flash storage devices.

This work is motivated by the urgent need to enhance the re-
liability of file systems in battery-powered mobile computing
systems and consumer electronics, especially when flash stor-
age devices are used as secondary storage units. We propose
a migration-based caching strategy that utilizes both DRAM
and NVRAM in the cache system to enhance the perfor-
mance and reliability of file systems by utilizing the access
patterns and the characteristics of flash storage devices. Un-
der the strategy, unmodified clean data and modified dirty
data are cached in the DRAM and NVRAM respectively, and
an enhanced caching architecture with a dirty cache tree de-
sign is employed to manage and search data efficiently. In ad-
dition, a page-based management scheme with a two-phase
selection policy is introduced to manage the NVRAM space
and allocate free NVRAM space appropriately. To evaluate
the performance of the proposed strategy, we conducted a
series of experiments on traces generated by the well-known
benchmark “Iometer” tool [26] using a 64GB flash storage
device simulated with a modified DiskSim simulator [1, 3].
The results demonstrate that the proposed strategy signifi-
cantly improves the performance of file systems in consumer
electronics that utilize flash storage devices for data storage.

The remainder of this paper is organized as follows. In Sec-
tion 2, we present the system architecture and explain the
motivation for this work. In Section 3, we describe the pro-
posed migration-based caching strategy; and in Section 4,
we discuss the performance evaluation. Section 6 contains
some concluding remarks.

2. SYSTEM ARCHITECTURE AND MOTI-

VATION
Flash storage devices (e.g., eMMC and SSDs) are usually
regarded as secondary storage devices for battery-powered

(a) Classical Approach (b) The Proposed Approach
with a Hybrid Cache of DRAM

and NVRAM

Figure 1. System Architecture

mobile computing systems and consumer electronics. They
are accessed by the host through an I/O interface, as shown
in Figure 1(a). Normally, a flash storage device uses a multi-
channel architecture to access multiple flash chips simul-
taneously; hence, the device’s read and write performance
could be improved significantly if it contains multiple flash
chips. The chips are usually managed by the flash transla-
tion layer (FTL), which emulates the underlying flash chips
as a block device (or a disk drive) and is responsible for
the address translation, garbage collection, and wear lev-
eling functions. On the host side, the file systems usually
implement a cache system in DRAM to enhance the read
and write performance of the secondary storage. A file sys-
tem usually contains metadata and userdata. The metadata
is general information about the file system, such as system
information, journaling information, and the attributes of
files/directories, while the userdata is the content of the files
and directories. Because of space allocation and caching per-
formance considerations, a file system usually partitions the
logical block address (LBA) space into consecutive clusters.
All the clusters are the same size (e.g., 4096B) and have the
same number of consecutive LBAs. Thus, the cache system
can store both metadata and userdata in a cluster unit.

Type
Access Time (nsec./2B)

Non-volatility
Read Write

DRAM 20 20 ×

MRAM 10–50 10–50 X

PRAM 20–80 20–80 X

FeRAM 30–100 30–100 X

Table 1. Performance Comparison of DRAM
and Different NVRAMs

Although the cache system can enhance the read and write
performance of file systems, the volatility of DRAM could
cause the loss of cached dirty data (i.e., modified data that
have not been written back to the storage device) if the
system crashes or a power failure occurs. As a result, the
consistency/reliability of the data and the file-system’s in-
tegrity could not be preserved in the event of system failure
or a power outage. In contrast, emerging NVRAMs, such as
MRAM, FeRAM, and PRAM, are not volatile and they can

preserve data after a power failure or system crash. However,
their unit prices are much higher than those of DRAM and
their read/write performance is worse than that of DRAM,
as shown in Table 1 [17]. Moreover, as shown in Table 2 [25,
29], flash storage devices do not perform well on small read
and write operations, especially small random writes. To
improve the overall performance of data access between the
host and the flash storage device, the number of small ran-
dom writes should be minimized. In addition, most existing
cache systems of file systems (e.g., EXT3 and FAT32) are
designed for mechanical hard disk drives and do not consider
the characteristics of flash storage devices.

Device Sequential Random (4KB)

Read Write Read Write

Sony SD Card 2.83MBps 3.06MBps 2.39MBps 25KBps

STEC Zeus SSD 200MBps 100MBps 52KBps 11KBps

Table 2. Performance Comparison of Flash Storage
Devices

As mentioned earlier, this work is motivated by the need
to enhance the performance and reliability of file systems
with caching support when flash storage devices are used as
secondary storage units. Our goal is to support both the
DRAM and the NVRAM in the cache system by utilizing
the cost simultaneously. Technically, we need to determine
how to identify and manage dirty data in file systems effi-
ciently, given the characteristics of flash storage devices and
the limited size of NVRAM. To resolve the problem, we pro-
pose an efficient caching strategy, which we describe in the
next section.

3. MIGRATION-BASED CACHING STRAT-

EGY

3.1 Overview
To improve the reliability and read/write performance of file
systems in battery-powered consumer electronics, we pro-
pose a migration-based caching strategy that exploits the
characteristics of flash storage devices. As shown in Fig-
ure 1(b), the proposed strategy uses DRAM and NVRAM
in the cache system to maintain clean data (i.e., unmodified
data) and dirty data (i.e., modified data) respectively. If any
clean data are modified, they are migrated to the NVRAM.
In the cache system, the storage device’s metadata is main-
tained by a device cache tree; the userdata in each file are
maintained by a file cache tree; and all the cached dirty data
are maintained by a dirty cache tree. All the trees are im-
plemented as modified radix trees, which are space-efficient
trees that are effective for looking up sequential data. (We
discuss this aspect further in Section 3.2.) In NVRAM, the
unit for caching data in file systems is a cluster. Our objec-
tive is to keep frequently updated data in the NVRAM as
long as possible (based on observation of the temporal local-
ity) and extend the average length of each write request (to
improve the performance of flash storage devices). When
the NVRAM is full, we initiate a two-phase procedure to
select the cached data that must be deleted to allow space
reclamation (see Section 3.3). In the first phase, we select
sequential data from among the dirty data that has been

updated the least recently, and then delete it in the second
phase.

3.2 Enhanced Caching Architecture and Dirty
Cache Tree

As mentioned in the previous section, the unit used to cache
data is a cluster. To manage the cached clusters, operating
systems usually adopt tree structures to maintain the cached
data because trees have fast lookup and insertion properties.
For example, Linux, which is used in Android phones, uti-
lizes a (special) radix tree to manage the cached data in
the DRAM-based cache system [2, 6, 11]. The radix tree is
space-efficient, and its height can be adjusted dynamically
based on the largest key value. As shown in Figure 2, each
node contains a fixed number of slots that are indexed by a
portion of the integer key of the cached data/cluster. Each
slot in the root node and the internal nodes points to a node;
each slot in the leaf nodes points to a page, where a page is
used to store the data of one cluster of file systems. Note
that dirty (resp. clean) pages are pages that cache dirty
(resp. clean) data. Suppose each node in Figure 2 contains
2n slots, where n is 6. If the largest key value of the cached
data is less than 2n, the entire tree can be represented by
a single node. (Note that the height of a tree with a single
node is 0.) When the largest key value of the cached data is
between 2n and 22n − 1, a new root node is created and the
original root node becomes an internal node indicated by the
first slot of the new root node. Therefore, if the largest key
value of the cached data is between 2dn and 2(d+1)n − 1, the
height of the needed radix tree is d. In a radix tree of height
d, the least significant (d+1)n bits of the key value are used
for lookup operations. Then, each level of the tree can be
used to index n bits of the key from the most significant bits
of the (d+1)n bits. The least significant n bits indicate the
slot that points to the page where the corresponding cluster
is cached. Hereafter, we refer “page” as a page pointed by the
cache trees in DRAM or NVRAM by default.

Figure 2. The DRAM-resident Radix Tree Used in
the Cache System of Linux

Modern operating systems such as Linux usually adopt a
tree structure (referred to as a cache tree) to maintain the
frequently-used file system metadata and the file contents/
userdata. Typically, the tree structure is saved over volatile
DRAM, along with the metadata and the userdata. For ex-
ample, in Linux, the system maintains a device cache tree
to manage the cached system metadata. In addition, each
accessed file usually has its own file cache tree (instead of
using one tree for all accessed files) to maintain the cached
content/userdata of the file. This enhances the lookup per-

formance for the cached content/userdata of each file. As
shown in Figure 3, the device cache tree uses the cluster
number (i.e., its sequence number in the device) as the key
to manage the cached metadata. Each file cache tree uses the
cluster index in the corresponding file to manage the cached
userdata or content in that file, where the cluster index is the
sequence number of the cluster in the file. Note that each
cluster in a file is physically stored in a cluster of the device.
As the cache trees and the cached metadata/userdata are
saved over volatile DRAM, the file system might lose the
cached metadata/userdata on accidental power failures, and
the data consistency may be harmed. Due to this reason,
NVRAM often becomes the alternative for the maintenance
of the frequently-used metadata and userdata of file systems,
in order to simultaneously enhance the performance and re-
liability of the file system.

Figure 3. Enhanced Caching Architecture with
Dirty Cache Tree

To ensure the reliability of file systems with a limited amount
of NVRAM, we propose an enhanced caching architecture
that maintains the clean data in the DRAM and the dirty
data in the NVRAM. That is, clean pages and dirty pages
are allocated to the DRAM and NVRAM respectively. To
manage the dirty pages efficiently, we designed a dirty cache
tree that is stored with the dirty pages in the NVRAM,
where it functions as a radix tree with the cluster number
(in the device) as the key. As shown in Figure 3, both clean
and dirty pages are indicated by the device cache tree or one
of the file cache trees; and the dirty pages are also indicated
by the dirty cache tree. In this way, the file system can
access all the cached data through the device cache tree or
the file cache trees. Moreover, when there is insufficient
NVRAM space to cache new dirty pages, the cache system
can easily find old dirty pages to replace through the dirty
cache tree. Therefore, the cache system only needs to reclaim
clean pages when there is insufficient DRAM space, since all
the dirty pages are cached in the NVRAM.

“Data migration” from the DRAM to the NVRAM occurs if
written data were originally cached on a clean page. Dur-
ing data migration, a page (called NVRAM page) is allo-
cated in the NVRAM and the written data is written to
the (NVRAM) page. Then, the space for the original clean
page is released so that the dirty data can be preserved if
the system crashes. Note that a dirty page should maintain
two pointers (see Figure 3). One points to its corresponding
slot in the device/file cache tree, and the other points to its
corresponding slot in the dirty cache tree. This is because,
when a dirty page is reclaimed, the corresponding slot of the
device/file cache tree should be notified, and when a dirty

page is accessed by the file system, the least-recently-used
(LRU) list maintained in the dirty cache tree should be up-
dated accordingly (see Section 3.3.2).

3.3 Page-based Management Scheme with a
Two-phase Selection Policy

3.3.1 Page-based Management Scheme

The proposed page-based scheme is responsible for manag-
ing the dirty pages and the dirty cache tree in the NVRAM
space. As shown in Figure 4, the scheme partitions the
NVRAM space into fixed-sized pages, each of which is used
to store one dirty page or nr (= ⌊sb/sn⌋) nodes of the dirty
cache tree, where sb is the size of a NVRAM page and sn is
the size of a node in the dirty cache tree. Note that the first
NVRAM page (referred to as the metapage in Figure 4) is
reserved to maintain pointers that indicate the root nodes
of the (cache) trees and the heads and tails of lists in the
NVRAM. For example, in Figure 4, the first pointer free-
pg-head indicates the first free NVRAM page, and each free
NVRAM page indicates the next free NVRAM page to con-
struct the free NVRAM page list. The second pointer root-
node indicates the root node of the dirty cache tree, and the
root node points to the other nodes in the tree.

Figure 4. The Layout of NVRAM with the Dirty
Cache Tree and the Cached Pages

When a new dirty page is created, it is allocated to the first
free NVRAM page on the free NVRAM page list. If the data
on a dirty page is flushed back to the storage device, the page
is removed from all the cache trees that point to it, and its
corresponding NVRAM page is returned to the free NVRAM
page list. The page-based management scheme also main-
tains a free tree node list. When a new tree node is created
and there is no free tree node on the free tree node list, it is
assigned to a free NVRAM page. Next, the NVRAM page is
partitioned into nr free tree nodes, which are added to the
above list and one of them is selected to store the new tree
node. When a tree node is removed from the dirty cache
tree due to the merging of two tree nodes or the deletion of
the last page indicated by a leaf node, the removed node is
returned to the free tree node list for future allocation. If
the number of free tree nodes on the list is higher than a pre-
determined threshold, the NVRAM page with some free tree
nodes or the largest number of free tree nodes is reclaimed by
moving the used tree nodes in that NVRAM page to other
free tree nodes. This reduces the number of free tree nodes
and improves the utilization of the NVRAM space. The
process is repeated until the number of free tree nodes is
lower than the predetermined threshold. Although the pro-
cess might degrade the caching performance, we can reduce
its frequency by proper threshold selection. Of course, this
is a trade-off between the performance and space utilization.

In practice, operating systems usually flush all dirty data

back to the storage device during shutdown; that is, the op-
eration empties the dirty pages and the dirty cache tree in
the NVRAM. However, if the system crashes or power is lost,
the dirty cache tree would not be empty when the system is
rebooted. Thus, all the dirty pages cached in the NVRAM
must be flushed back to the flash storage device in order of
the cluster numbers before any data in the file system can be
migrated to the cache system. The operation ensures that
all the data in the file system are preserved and synchro-
nized. Then, the system can be rebooted as if it had been
shut down properly. Although this might increase the time
required to reboot the system, it minimizes the modifications
required by the cache system and reduces the management
complexity. The procedure used to flush dirty pages from
the NVRAM to the flash storage device is very efficient be-
cause flash storage devices perform well on large sequential
writes, and the dirty cache tree is very efficient in looking
up dirty pages in order of the cluster numbers. In other
words, with the dirty cache tree, it is possible to maximize
the write performance of flash storage devices through large
sequential writes. Note that if the shutdown performance is
more important, the dirty pages could stay in the NVRAM
without being flushed back to flash storage devices during
shutdown; however, when a cluster is to be cached in the
cache system after the system is rebooted, the dirty cache
tree should be scanned to check whether the to-be-cached
cluster is already cached in the NVRAM. This is because
the device cache tree and the file cache trees are lost after
the system is powered off.

3.3.2 Two-phase Selection Strategy

When there is not enough NVRAM space, some dirty pages
should be selected and be flushed back to the flash stor-
age device, where the selected dirty pages are called victim
dirty pages. In this work, a two-phase selection strategy is
proposed to select victim dirty pages by utilizing the char-
acteristics of flash storage devices to reduce the amount of
data written back to the flash storage device and to increase
the average length of data sequences in write requests. In
general, data accesses have both temporal and spatial lo-
calities. Moreover, frequently written data sequences are
usually small, so they are not suitable for flash storage de-
vices. Thus, in the first phase, the selection strategy adopts
an LRU-based procedure to identify the dirty pages that are
unlikely to be referenced in the near future (Figure 5(a)).
In the second phase, a probability-based procedure lets small
least-recently-used dirty data sequences have a higher proba-
bility of staying in the NVRAM (Figure 5(b)). Consequently,
the data will have more chances being aggregated into larger
data sequences before being flushed back to the flash storage
device.

As shown in Figure 5(a), in the first phase, the strategy uses
a double-linked list to maintain an LRU list based on the
times dirty pages were referenced. The list is implemented
in the slots of leaf nodes in the dirty cache tree. That is, each
slot of a leaf node should have two corresponding pointers to
form the LRU list. As a result, when a cached dirty page is
referenced, it can be moved to the tail of the LRU list in con-
stant time without searching the whole list. As Figure 5(b)
shows, in the second phase, a victim pool is maintained to
manage a victim tree, which is a radix tree with the cluster

(a) Phase 1: The LRU List of the Candidate
Victims

(b) Phase 2: The Candidate Victim Tree for
Victim Selection

Figure 5. The Two-phase Selection Policy

number as the key to keep the least-recently-used nv dirty
pages (in order of cluster number); nv is a predetermined
threshold that is based on the size of the NVRAM and the
access patterns of the adopted applications. In this phase, to
find consecutive clusters of the storage device, we implement
a probability-based policy to run a circular scan to the dirty
pages indicated by the victim tree in order of cluster number.
If the number of consecutive clusters is large (resp. small),
the data on the dirty pages in the clusters have a higher
(resp. lower) probability of being written back to the under-
lying flash storage device, and the NVRAM pages occupied
by the dirty pages will be returned to the free NVRAM page
list. For example, the probability that the data of a dirty
cached cluster is written to flash memory is just the number
of cached clusters indexed by the same node of the candidate
victim tree divided by the maximal number nr of entries in
each node of the candidate victim tree. This increases the
average length of write requests.

In practice, we can maintain a counter in each slot of the leaf
nodes in the victim tree to record how many times a dirty
page have been scanned without being flushed back to the
flash storage device. If the counter of a dirty page reaches
a predetermined total number k of times (i.e., k times), the
data of the cluster in the dirty page is forcibly flushed back
to the flash storage device together with other dirty pages
that contain consecutive clusters of the cluster stored in this
dirty page. This is called the“multiple-chance policy” (or“k-
chance policy”) and it prevents any dirty pages remaining in
the victim tree for a long time. Even short data sequences
should be flushed back to the flash storage device if they
have not been referenced for a long time so as to improve
the utilization of the NVRAM space.

3.4 Implementation Remarks

3.4.1 File-level Concerns for Cache Management

When file information is available to the cache system, the
proposed cache strategy could be extended to further en-
hance the space utilization and performance of the hybrid
cache. Essentially, this extension is based on an observation
that the access behaviors of data/clusters are often related

to those of different files in many application scenarios. This
is due to that files are inherent separations for data accesses
of many applications. In particular, when some cached data
are frequently accessed in the past but have not been ac-
cessed for a long time, it is a sign that the file with the
cached data might be no longer used by the applications. In
this case, all other clusters of the same file could be evicted
from the NVRAM and written back to flash memory, so as
to enhance the space utilization of the NVRAM. Another
advantage of this aggressive eviction strategy is that simul-
taneously writing a large chunk of data to flash memory is
typically much more efficient (in terms of write throughput)
than writing only one cluster at a time, due to the multi-
channel architecture of many modern flash-memory storage
systems.

3.4.2 Reduction of Mounting/Un-mounting Time of
Storage Device

As explained in Section 3.3.1, the operating system used to
flush all data in the dirty cache tree to the storage device
during shutdown to ensure the data consistency. However,
since the NVRAM is non-volatile, it is actually not needed
to flush the dirty cache tree; only the related information of
the dirty cache tree, such as the root node of the dirty cache
tree, needs to be written to a specific area of NVRAM (such
as the beginning pages of the NVRAM) when the storage
device is un-mounted. During the next time the storage de-
vice is mounted, this information would be loaded back from
NVRAM to DRAM, so as to restore the state of the dirty
cache tree on NVRAM. Here, please note that there should
still be a bit field in each tree node to indicate whether the
node is the root node of the dirty cache tree or not. This
field is necessary to prevent the loss of the NVRAM state in-
formation on accidental power failure. With this implemen-
tation technique, the time to mount or un-mount the storage
device could be considerably reduced, since the whole dirty
cache tree no longer needs to be written to or loaded from
the storage device when the storage device is mounted or
un-mounted.

4. PERFORMANCE EVALUATION

4.1 Experimental Setup
In this section, we evaluate the performance of the proposed
migration-based caching strategy on different access patterns
and NVRAM configurations. The access patterns are based
on various average-size requests and different percentages
of random requests; while the NVRAM configurations are
based on different-sized NVRAMs and different-sized vic-
tim pools. We compared our strategy’s performance with
that of a cache system that only caches read data and write
data back to the flash storage device directly (referred to as
the cache system without NVRAM). The comparison is fair
because both approaches can maintain the sanity and data
consistency of file systems if the system crashes or power is
lost.

In this experiment, the probability-based policy of the pro-
posed strategy gave sequential data (i.e., data in the victim
pool) that was not larger than 4KB and not smaller than
256KB a 5% chance and a 100% chance of being selected
respectively. For sequential data between 4KB and 256KB,

the probabilities of being selected were derived by interpo-
lating the probabilities of 5% and 100% linearly based on
the length of the data sequence. In addition, each NVRAM
page could store 10 tree nodes, and the maximal number
of free tree nodes in the NVRAM was set at 20. As shown
in Table 3, a 64GB flash storage device was simulated by a
modified version of the DiskSim simulator executed on the
Linux operating system. The modified simulator could sup-
port simulations of multi-channel flash storage devices with
multiple chips [1, 3]. NVRAM was of 64MB with working
frequency 400MHz when the NVRAM configuration was not
clearly stated. The trace was collected with the “Iometer”
benchmark tool [26] which ran on the EXT2 file system of
Linux (where each cluster of EXT2 was 4KB). The total
amount of written data was 1GB, and 50% of the collected
access traces were random requests. The Iometer is an I/O
subsystem measurement and characterization tool for single
and clustered systems. It is widely regarded as the bench-
mark for evaluating the performance of storage systems on
Linux.

Parameter Value

Number of Channels 16
Number of Chips 16 (per Channel)
Chip Size 16384 Blocks (4GB)
Block Size 64 Pages (256KB)
Page Size 4KB + 128B
Read Time 25µsec. Per Page
Write/Program Time 200µsec. Per Page
Erase Time 1.5msec. Per Block

Table 3. Properties of the Simulated Flash Storage
Device

4.2 Access Performance

4.2.1 Different Access Patterns

Figure 6(a) shows the performance of the proposed strategy
on different average-size requests, where the x-axis denotes
the size of the collected access pattern, and the y-axis de-
notes the completion time. The proposed strategy outper-
formed the cache system without NVRAM as the average
request size was smaller. This is because the proposed strat-
egy tries to flush more sequential data when the NVRAM
cache is full. For example, when the average request size is
16KB, the proposed strategy outperforms the cached system
without NVRAM by more than 38.2%.

 0
 2000

 4000
 6000

 8000
 10000

 12000
 14000

 16000
 18000

 20000
 22000

 24000
 26000

 28000
 30000

256128643216

C
o
m

p
le

ti
o
n
 T

im
e
 (

m
s
)

Without NVRAM
With NVRAM

Average Request Size (KB)

(a) Average Request Size

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

807060504030

C
o
m

p
le

ti
o
n
 T

im
e
 (

m
s
)

Percentage of Random Requests (%)

Without NVRAM
With NVRAM

(b) Percentage of Random
Requests

Figure 6. Different Access Patterns

If a request is random, it does not access LBAs next to the
LBAs (or clusters next to the clusters) accessed by the pre-
vious request. As shown in Figure 6(b), the proposed strat-
egy outperformed the compared system by at least 15.2%
in terms of the completion time. The completion time of
the proposed strategy increased as the percentage of ran-
dom requests increased. This is because it becomes harder
to find longer data sequences in the victim pool when the
percentage of random requests increases.

4.2.2 Different NVRAM Configurations

Figure 7 shows the performance of the proposed strategy
on different NVRAM configurations. The strategy requires
a shorter completion time as the size of the NVRAM in-
creases (Figure 7(a)) because the NVRAM can cache more
recently-used data; hence, the proposed strategy has a higher
probability of finding a longer sequence of data to flush back
to the flash storage device. For example, when the size of
the NVRAM is 64MB, our strategy requires up to 28.34%
less time than the cache system without NVRAM support.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

2561286432168

C
o
m

p
le

ti
o
n
 T

im
e
 (

m
s
)

Without NVRAM
With NVRAM

NVRAM Size (MB)

(a) NVRAM Size

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

4832168421

C
o
m

p
le

ti
o
n
 T

im
e
 (

m
s
)

Without NVRAM
With NVRAM

Victim Pool Size (MB)

(b) Victim Pool Size

Figure 7. Different NVRAM Configurations

As shown in Figure 7(b), when the size of the victim pool
increases, the proposed strategy’s completion time is shorter.
This is because the proposed two-phase selection strategy
can reclaim cached dirty data that will be referenced in the
near future. Thus, a larger victim pool could help increase
the average size of data sequences flushed to the flash storage
device for each request.

5. ACKNOWLEDGMENT
This work is based on an earlier work “Performance and
Reliability Enhancement for File Systems with Non-Volatile
RAM over Solid-State Drives” in the Proceedings of the 2009
International Workshop on Software Support for Portable
Storage (IWSSPS) [14].

6. CONCLUSION
This work is motivated by the urgent need to enhance the
reliability of file systems in embedded computing systems
and consumer electronics that utilize flash storage devices.
To this end, we propose a migration-based caching strategy
that considers the access patterns, access performance, and
characteristics of flash storage devices. In particular, we in-
troduce an enhanced caching architecture with a dirty cache
tree design to manage data efficiently, where clean data and
dirty data are cached in the DRAM and NVRAM respec-
tively. We also present a segment-based management scheme
with a two-phase selection policy to manage the NVRAM
space and allocate free NVRAM space appropriately. The

results of experiments based on traces generated by represen-
tative benchmarks demonstrate that the proposed approach
significantly improves the performance of file systems in flash
storage devices.

In our future research, we will exploit the characteristics of
various types of NVRAM to evaluate the proposed strat-
egy and to boost the booting and shutdown performance of
operating systems. We will also explore the possibility of
utilizing NVRAM as a new layer between the DRAM and
storage devices to form a hybrid multi-layer storage system.

7. REFERENCES

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,
M. Manasse, and R. Panigrahy. Design Tradeoffs for
SSD Performance. In the USENIX Annual Technical
Conference (ATC), pages 57–70, Jun. 2008.

[2] D. P. Bovet and M. Cesati. Understanding the Linux
Kernel, Third Edition. O’Reilly, Nov. 2005.

[3] J. S. Bucy and G. R. Ganger. The DiskSim Simulation
Environment Version 3.0 Reference Manual,
http://citeseer.ist.psu.edu/bucy03disksim.html, 2003.

[4] L.-P. Chang and T.-W. Kuo. An Efficient Management
Scheme for Large-Scale Flash-Memory Storage
Systems. In the ACM Symposium on Applied
Computing (SAC), pages 862–868, Mar. 2004.

[5] Y.-H. Chang and T.-W. Kuo. A Commitment-based
Management Strategy for the Performance and
Reliability Enhancement of Flash-memory Storage
Systems. In the 46th ACM/IEEE Design Automation
Conference (DAC), 2009.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Second Edition.
The MIT Press, 2001.

[7] H. Dai, M. Neufeld, and R. Han. ELF: an Efficient
Log-structured Flash File System for Micro Sensor
Nodes. In the Second International Conference on
Embedded Networked Sensor Systems (SenSys), pages
176–187. ACM, 2004.

[8] I. H. Doh, J. Choi, D. Lee, and S. H. Noh. Exploiting
Non-Volatile RAM to Enhance Flash File System
Performance. In the International Conference on
Embedded Software (EMSOFT), Sept. 2007.

[9] I. H. Doh, H. J. Lee, Y. J. Moon, E. Kim, J. Choi,
D. Lee, and S. H. Noh. Impact of NVRAM write cache
for file system metadata on I/O performance in
embedded systems. In the 2009 ACM Symposium on
Applied Computing (SAC), pages 1658–1663. ACM,
2009.

[10] Y. Du, M. Cai, and J. Dong. Adaptive Energy-aware
Design of a Multi-bank Flash-memory Storage System.
the 11th IEEE Conference on Embedded and
Real-Time Computing Systems and Applications
(RTCSA), 2005.

[11] Eklektix Inc. Trees I: Radix Trees,
http://lwn.net/Articles/175432/, March 2006.

[12] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a Flash
Translation Layer Employing Demand-Based Selective
Caching of Page-Level Address Mappings. In the 14th
International Conference on Architectural Support for

Programming Languages and Operating Systems
(ASPLOS), Mar. 2009.

[13] H. Gyu and N. Chang. Energy-aware Memory
Allocation in Heterogeneous Non-volatile Memory
Systems. In the International Symposium on Low
Power Electronics and Design (ISLPED), 2003.

[14] C.-K. Hsieh, Y.-H. Chang, C.-W. Chang, and T.-W.
Kuo. Performance and Reliability Enhancement for
File Systems with Non-Volatile RAM over Solid-State
Drives. In the International Workshop on Software
Support for Portable Storage (IWSSPS), Oct. 2009.

[15] Y. Joo, Y. Cho, D. Shin, and N. Chang. Energy-aware
Data Compression for Multi-level Cell (MLC) Flash
Memory. In the 44th ACM/IEEE Design Automation
Conference (DAC), pages 716–719, 2007.

[16] W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn.
DFS: A file system for virtualized flash storage. ACM
Transactions on Storage (TOS), 6(3):14:1–14:25, Sept.
2010.

[17] S. Kang, S. Park, H. Jung, H. Shim, and J. Cha.
Performance trade-offs in using NVRAM write buffer
for flash memory-based storage devices. IEEE
Transactions on Computers (TC), 58(6):744–758,
2009.

[18] K. Kim and G.-H. Koh. Future memory Technology
Including Emerging New Memories. In the 24th
International Conference of Microelectronics, May
2004.

[19] C. Lee and S.-H. Lim. Efficient logging of metadata
using NVRAM for NAND flash based file system.
IEEE Transactions on Consumer Electronics (TCE),
58(1):86–94, Feb. 2012.

[20] J.-H. Lee, G.-H. Park, and S.-D. Kim. A New
NAND-type Flash Memory Package with Smart Buffer
System for Spatial and Temporal Localities. Journal of
Systems Architecture (JSA), 51:111–123, 2004.

[21] S.-W. Lee, W.-K. Choi, and D.-J. Park. FAST: An
Efficient Flash Translation Layer for Flash Memory.
Lecture Notes in Computer Science (LNCS),
4096:879–887, 2006.

[22] S.-H. Lim and K.-H. Park. An efficient NAND flash file
system for flash memory storage. IEEE Transactions
on Computers (TC), 55(7):906–912, 2006.

[23] J.-H. Lin, Y.-H. Chang, J.-W. Hsieh, T.-W. Kuo, and
C.-C. Yang. A NOR Emulation Strategy over NAND
Flash Memory. In the 13th IEEE International
Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2007.

[24] Aleph One Company. Yet Another Flash Filing
System (YAFFS), http://www.yaffs.net . Technical
report, 2012.

[25] Mtron. MSD-SATA3025 Product Specification, 2008.

[26] Open Source Development Lab (OSDL). Iometer
User’s Guide, http://www.iometer.org/
doc/documents.html, 12 2003.

[27] C. Park, J.-U. Kang, S.-Y. Park, and J.-S. Kim.
Energy-Aware Demand Paging on NAND Flash-based
Embedded Storages. In the ACM/IEEE International
Symposium on Low Power Electronics and Design
(ISLPED), Aug. 2004.

[28] Y. Park, S.-H. Lim, C. Lee, and K. H. Park. PFFS: a
scalable flash memory file system for the hybrid
architecture of phase-change RAM and NAND flash.
In the 2008 ACM Symposium on Applied Computing
(SAC), SAC ’08, pages 1498–1503, New York, NY,
USA, 2008. ACM.

[29] STEC Incorporation. ZeusIOPS Solid State Drive
Specification, 2007.

[30] A.-I. A. Wang, G. Kuenning, P. Reiher, and G. Popek.
The Conquest file system: Better performance through
a disk/persistent-RAM hybrid design. ACM
Transactions on Storage (TOS), 2(3):309–348, Aug.
2006.

[31] D. Woodhouse. JFFS: The Journalling Flash File
System. In Ottawa Linux Symposium, 2001.

[32] C.-H. Wu and T.-W. Kuo. An Adaptive Two-level
Management for the Flash Translation Layer in
Embedded Systems. In the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD),
pages 601–606, 2006.

ABOUT THE AUTHORS:

Po-Chun Huang received his Ph.D. degree in Computer Science and Information
Engineering from National Taiwan University in June 2012. He worked as a
teaching assistant while pursuing his Ph.D. degree, and he received the Best
Teaching Assistant Award in 2012. Also, he received the Third Place Award in the
Embedded System Design Contest in 2008 and 2009 respectively. Once graduated,
he worked as a postdoctoral research fellow at Institute of Information Science,
Academia Sinica. His primary research interests include storage systems, operating
systems, embedded systems, computer system architectures and cloud computing
systems.

Yuan-Hao Chang received his Ph.D. degree in Networking and Multimedia of
Computer Science and Information Engineering from National Taiwan University,
Taipei, Taiwan, in 2009. Now he is an assistant research fellow at the Institute of
Information Science, Academia Sinica, Taipei, Taiwan, since Aug. 2011. Previously,
he was an assistant professor at the Department of Electronic Engineering, National
Taipei University of Technology, Taipei, Taiwan, between Feb. 2010 and Jul. 2011.
His research interests include storage systems, embedded systems, operating
systems, and computer system architecture.

Che-Wei Tsao is currently pursuing his Ph.D. degree in Graduate Institute of
Networking and Multimedia in National Taiwan University, Taipei, Taiwan
(R.O.C.). Formerly, he received his M.S. degree in Graduate Institute of Computer
and Communication Engineering in National Taipei University of Technology,
Taipei, Taiwan (R.O.C.) in June 2012. Now, he serves in R&D alternative military
service at Institute of Information Science, Academia Sinica. His main research
interests include storage systems, real-time operating systems, embedded systems,
and disk IO communication protocols.

Ming-Chang Yang received his B.S. degree in Computer Science from National
Chiao-Tung University, Hsinchu, Taiwan, in 2010. He received his M.S. degree in
Computer Science and Information Engineering from National Taiwan University,
Taipei, Taiwan, in 2012. Now he is a Ph.D. candidate in Computer Science and
Information Engineering from National Taiwan University, Taipei, Taiwan, and is
also a research assistant in the Institute of Information Science of Academia Sinica,
Taipei, Taiwan. His primary research interests include storage systems, embedded
systems, and next-generation memory architectures.

Cheng-Kang Hsieh received the BS degree in computer science and information
engineering from National Taiwan University in 2009. He is currently a PhD student
in UCLA Computer Science. Previously, he was a research assistant in the Research
Center for Information Technology Innovation (CITI), Academia Sinica, Taiwan.
His research interests include mobile systems, storage systems, and personal data
analysis.

SimPal – A Design Study on a Framework for Flexible
Safety-Critical Software Development

Jesper Pedersen Notander
Dept. of Computer Science,

Lund University, Sweden
jesper.notander@cs.lth.se

Per Runeson
Dept. of Computer Science,

Lund University, Sweden
per.runeson@cs.lth.se

Martin Höst
Dept. of Computer Science,

Lund University, Sweden
martin.host@cs.lth.se

ABSTRACT
This paper presents the findings from a design study on a
framework for flexible safety-critical software development,
called SimPal. It is an extended version of a paper that was
published in SAC’13 Proceedings of the 2013 ACM Sym-
posium on Applied Computing, in which additional details
about SimPal as well as a more extensive evaluation of the
framework is presented. The objective is to identify neces-
sary quality properties and to learn more about the chal-
lenges of realizing frameworks such as SimPal. We approach
our research questions by developing a framework and by
analysing our experiences from the design and evaluation
process. Some necessary quality characteristics has been
identified by discussing the ISO25010 quality in use quality
model in relation to the problem domain, which were then
used to design and evaluate the developed framework. The
evaluation was conducted as a design case in which a soft
safety controller was developed following the methodology
outlined in the paper. We show that our approach, which tries
to merge service-oriented practices with model-based devel-
opment techniques, has potential considering safety-critical
software development. However, there are some concerns
about run-time performance as well as the ability to qualify
the tool for safety-critical development. Based on our results
we conclude that the ideas behind the SimPal framework
are sound but more work is required to investigate how they
can be realized. For the future, we plan on further inves-
tigating the code generating capabilities of the modelling
tool we are using to see if and how it can be utilised to in-
crease performance. We also plan on adding more features to
the framework, for instance coordination and configuration
of services, as well as monitoring of messages and system
properties.1

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms
Design, Verification

Keywords
Frameworks and Tools, Verification, Safety-Critical Develop-
ment, Real-Time Systems, Service-Oriented Computing

1Copyright is held by the authors. This work is
based on an earlier work: SAC’13 Proceedings of
the 2013 ACM Symposium on Applied Comput-
ing, Copyright 2013 ACM 978-1-4503-1656-9/13/03.
http://doi.acm.org/10.1145/2480362.2480575.

1. INTRODUCTION
Safety critical software development is characterized by long
lead times due to inflexible development processes and rigor-
ous requirements on verification and validation of the source
code and the overall system. Traditionally plan driven pro-
cess models have been used and many certification standards
stipulate or implicitly assume the use of such a process model
[1]. Plan driven processes paint an appealing picture of
software development as a linear path starting with the con-
ception of an idea towards design, implementation and finally
verification and validation. Several standards advocate inde-
pendence between activities [16, 9], i.e. different persons are
needed to perform different activities, e.g. programming and
reviewing code, which fits well with a linear process model,
where one person is assigned one task.

In recent years the software industry has pushed towards
more iterative and agile process models [12]. The reasons are
several but the most interesting, for safety critical software
development, is that agile processes capture requirement re-
lated problems early, e.g. not fulfilling requirements, wrong
requirements, unrealistic requirements, missing requirements,
unwanted or wanted requirements etc. In the traditional
processes many of these problems are first found at a late
stage in the development, where it is costly and time consum-
ing to fix them. From a business perspective agile methods
promises shorter lead times and better handling of changing
requirements, which in turn promises faster deliveries and
releases, even larger profits and market shares [18].

To support a transition to agile development in safety criti-
cal software development, tools, methods and architectures
need to be aligned with the strict assessment requirements,
dictated by the safety standards and the flexibility offered
by the agile processes.

Because safety at its core is a requirements management
problem [11], tools and methods need to take into account
both the changing nature of requirements and the verifica-
tion and validation of them, preferably as early as possible
in the development process. The model-based development
paradigm tries to solve this by using models of the system
at different levels of abstraction to verify specific properties
of the system [7]. If a property has been proven correct or
tested to an acceptable level of correctness in a model, it is
assumed that it will hold for the final system as well, i.e. if
the implementation process is correct.

Another benefit of model-based development is that it can be
combined with automatic code generation so that executable
code can be generated directly from the models. The full

benefit of this union is achieved if the code generator is certi-
fied for use in safety critical development, because then it can
be argued that the code generated will satisfy the properties
of its model, thus further verification of these properties in
the source code is superfluous. However, it might not be
feasible due to high costs, non-deterministic behaviour or
unspecified behaviour, to certify the code generator, although
there exist examples where it has been done, e.g. SCADE
from Esterel-Technologies. Despite that, code generation can
still be useful for testing software and system level properties
in a simulator or in a controlled test environment.

Generation of executable code is only the first step toward
a fully integrated development environment for safety criti-
cal software, system integration and deployment must also
be considered. Service-oriented architecture (SoA) provides
mechanisms for publishing, discovering and integrating ser-
vices. Although, SoA has primarily been used for non safety
critical systems in the past [21] the core concepts fit very
well with some of the basic design principles of safety criti-
cal software systems, e.g. code encapsulation, separation of
concerns and memory/execution partitioning.

The goal of this paper is to identify some of the necessary
characteristics of a framework for model-based flexible safety
critical software development and to learn more about the
challenges of realizing such a framework. To aid us in under-
standing the challenges, we developed a framework, called
SimPal, based on our early assumptions about the necessary
characteristics and applied it to the development of a soft
safety controller in a mobile robotics system.

This paper is an extended version of a paper published in
SAC’13 Proceedings of the 2013 ACM Symposium on Ap-
plied Computing [13]. In this version, additional details
about SimPal has been included as well as a more compre-
hensive evaluation of the framework. We also present some
more background on the problem formulation behind the
framework.

The rest of the paper is structured as follows: We start by
describing our research approach, followed by, presenting the
characteristics we identified as necessary for a flexible safety-
critical development framework. Then we move on to describe
the SimPal framework: its design and how it is supposed
to be used. The paper concludes with the evaluation of the
SimPal framework, our conclusions and suggestions for future
work.

2. RESEARCH METHOD
The research presented in this paper could be classified as
design research [8, 2]. In design research the creation and
evaluation of artefacts is used to increase our understanding
of the phenomenon under study. Collins et al. [2] outline,
what they conceive as, the seven steps of design research.
The work in this paper focuses mainly on the steps: artefact
design, problem relevance and evaluation of the design.

2.1 Design Input
The input to the design process was threefold. Most signifi-
cant was our experiences from the EnGroSS project , which
is a multi-disciplinary research project in the mobile robotics
domain. The goal of the project is to show the utility of

flexible software architectures, in a context with real-time
and safety-critical constraints, by developing a mobile robot
demonstrator.

Our second input was the preliminary results of a qualitative
industrial survey on best practices in safety critical software
development [14], which had impact on the analysis of the
problem relevance and the initial framework evaluation.

Our final input was the outcome from the discussions among
the authors during the design process. It should be noted
that one of the authors has recent industrial experience of
working with software in a safety-critical context.

2.2 Problem Relevance
In our discussions we identified the need for tools and method-
ologies that bind the different parts of a development process
together, in particular we saw the need for a framework that
is able to handle changing requirements, specification, ver-
ification and validation. Furthermore, we concluded from
the survey results [14] that we need to be able to cope with
component based systems, e.g. based on service-oriented
architectures. An early assumption was that such a frame-
work should be able to integrate with existing development
processes and tools.

Moreover, we considered the following situation. In the En-
GroSS project there are both software engineers and function
specialists, mainly navigation, robot and vision specialists.
Software is developed using PalCom [20], which is a service-
oriented middleware that is built around services that are
provided by devices, and coordinated and configured with
assemblies.

Services are usually programmed by the function specialists
directly using some high-level language, e.g. Java, C, or
Python. In the case of PalCom this typically entails the
extension of a base service class with additional function
specific code. This means that the function specialist must
understand the PalCom service and device API and have a
good understanding of how the callback semantics of PalCom
works. Furthermore, the developer needs to be knowledgeable
about software engineering practices and how to produce high
quality software.

Deployment, coordinating and configuring of services requires
the use of The Thing and the PalCom browser, which are two
PalCom specific programs that requires additional knowledge
to use.

Function specialists should not spend time on software en-
gineering tasks, instead they should focus their effort on
designing, and testing algorithms, which can be done in a
suitable modelling tool. However, at a certain point algo-
rithms need to be deployed on their target platform to fully
test whether they work as intended or not. At that point,
currently two options exists, either the function specialist
writes the software implementing the algorithm or a software
engineer is given the task. The first option is sensitive to
knowledge gaps and the second to communication gaps.

Based on this problem formulation and the aim of gaining
further insights into the technical challenges associated with
the kind of frameworks we had identified the need for, we

developed a prototype tool called SimPal. The purpose of the
tool was to simplify the development of software components
by integrating the software platform used in the EnGroSS
project with a model-based development tool, by doing so
we saw that the effort of integration, deployment and testing
could be reduced. In particular, we wanted to hide the under-
lying software platform PalCom from the function specialists,
by integrating it with Matlab and Simulink.

2.3 Research Questions
Based on the initial discussions and the problem formulation
above we formulate the following research questions.

RQ1 Which quality characteristics of a development frame-
work are necessary in flexible safety-critical software
development?

RQ2 What are the challenges with employing model-based
design in a flexible safety-critical software architecture?

The first question is addressed by presenting our effort to
identify what we consider to be the relevant quality charac-
teristics of a framework intended for flexible safety-critical
software development. Our identification is based on a liter-
ature study and the preliminary results from the industrial
study previously mentioned [14].

The identification of the quality characteristics was done by
mapping capabilities that we consider necessary or desirable
in a flexible safety-critical framework to the quality model of
ISO25010 [10], using informed arguments [8]. We chose the
standard because its quality model, which is an extension
of the one presented in ISO 9126 [6], considers not only
technical properties of software but also properties that are
related to the use of software, Moreover, it is considered
to be reasonably accurate both for industrial practice and
academic work.

The analysis began with the definition of the premises in-
cluding the assumed context of the framework. In the next
step we identified the capabilities by reasoning about chal-
lenges, constraints and properties of a flexible framework
from four different aspects: model-based development, agile
development, service-oriented architecture and safety-critical
software development. The choice of these aspects was pri-
marily based on the constraints on the research project as a
whole and to a lesser degree from a suitability perspective
regarding safety. Furthermore, we consider them to be highly
relevant as they correlated with current trends in the safety-
critical software industry. Finally, the capabilities were, to
the best of our abilities, mapped to the quality models of
ISO25010.

Our approach to the second research question is to report
on the observations and experiences gained during the de-
velopment of a soft safety controller for the mobile robotics
platform in the EnGroSS project, using the SimPal frame-
work.

The development of the soft safety controller was conducted
in iterations, according to our proposed work methodology.
First, a pure software system was developed running on
a desktop computer. Next we deployed a dummy service
on the device that was going to communicate and relay
scan data from the laser scanner on the robot platform, a

Raspberry-PI. Finally, we replaced the dummy service with a
service that connect to the laser scanner and relays scan data
to all listening PalCom services. In addition, performance
measurements were conducted for some iterations.

3. FRAMEWORK CHARACTERISTICS
In this section we identify the necessary characteristics of a
model-based framework for flexible safety-critical software
development, using a standard model and related work in
several fields. The resulting properties are summarized in
Table 1.

3.1 Premises
We have based our analysis on the quality models of ISO25010.
Our main effort was put in identifying the desired quality in
use sub-characteristics of the development framework and
specific external quality attributes.

Quality in use is a system level quality model that considers
not only software but also: hardware, operating environment,
users, tasks and social factors. It is divided into three main
characteristics: usability, flexibility and safety. To be able to
apply the model, the context of use for the analysed system
must be defined, as the characteristics is defined in terms of
it.

External quality attributes are software quality attributes
that can be measured on a software system when looking
at it as a black box. They are thus mainly concerned with
the interaction of the system with the outside world and the
expectations on the system.

We have assumed in our analysis that the context of the
framework is that it will be used inside a company that
has prior experience with developing safety-critical systems
and, because of this, has a process model and tool chain
that conforms to applicable safety standards. It is however
not assumed that there exist a seamless integration between
different tools and activities in the process model.

3.2 Model-Based Development
Seamless integration with model-based methodologies have
become more and more important with the increasing popu-
larity and subsequent introduction of the model-based devel-
opment paradigm in software development [7], especially in
the safety-critical and real-time systems domain. Although,
we do not feel it necessary at this time to accommodate
the full range of proposed model-based techniques (i.e. full
support of formal modelling techniques, e.g. model checking,
constraint programming, theorem solvers, Petri net modelling
etc.) a framework should at least provide the equivalent func-
tionality of industrial best practice.

Cost is an important aspect that must be taken into account
because if it is too expensive to introduce a new framework,
in relation to the expected gain, it will not be adopted by
industry. Although the cost of new infrastructure in terms
of better equipment and software might not be negligible
the cost of training, especially in a resource constrained
development environment, might be the greatest limiting
factor. It follows that it should be easy to introduce such a
framework in an existing development organization without
too much effort spent on training and integration.

Table 1. Identified properties of a flexible model-based safety-critical development framework, mapped to the
quality in use quality model in ISO25010.

Characteristics
Aspect Argument

Main Sub

Usability Efficiency Model-Based Development A1. A framework should not be harder to learn than
already existing tools. It should be easy to use and
be adaptable to current work procedures.

Agile Development A2. The development overhead of preparing software
for verification, e.g. code instrumentation or wrapper
code, might work as a deterrent against small incre-
mental changes, thus a framework useable in an agile
context would need to minimize such overhead, e.g.
by providing a uniform deployment mechanism.

Flexibility Context Conformity Model-Based Development A3. The framework should be easy to deploy in a
development organization and be able to interface
directly with existing tools.

Context Extendability Model-Based Development A4. The framework should not be static in terms
of functionality and development practices, and fully
accommodate changing needs and new developments
of best practices.

Service-Oriented Architecture A5. The architecture should allow flexible extensions
beyond original intents of the system.

Safety Safety Compliance Safety-Critical Software A6. The framework should be analysable and pre-
dictable, and be compliant with safety standards.

Another limiting factor is the risk of becoming dependent
of a framework that cannot adapt to the evolution of its
constituent parts. For this reason a framework must be able
to continuously incorporate new functionality and be able to
adapt to evolving practices or else it becomes obsolete.

3.3 Agile Development
The introduction of agile methodologies in safety-critical
software development has implications for the design of a
framework, and for the capabilities it should incorporate. The
agile movement proposes that software should be developed
in small steps with few new functions added in each iteration,
but fully tested and in a working condition, i.e. after each
iteration the delivered source code should be executable
and meet the requirements of the implemented functions [4].
Thus, for a framework to be successful in an agile context it
must be able to handle incremental development, including
verification and validation.

Software components, which is understood to loosely mean a
collection of software functions with some commonality, in the
real-time domain tend to be developed in isolation by function
specialists, for later use in larger systems. Thus, considering
the agile way of incrementally adding functionality, these
systems will be composed of smaller parts that are added,
removed, changed and integrated with each other over time.
Herein lies a conflict with the verification and validation of
system level properties, e.g. safety.

The model-based approach to solve this conflict is to define
the desired properties in a system level model and formulate
the requirements that satisfy the properties as constraints on
the components of the system. Although this is appealing

in theory, in practice it is much more difficult because prop-
erties of real-time systems depends on the target hardware
platform. For the model-based approach to work, it would
be necessary to have accurate hardware models, which might
not be possible, e.g. missing data about the hardware and
the target environment.

In the absence of accurate hardware models, simulators and
test environments can be used to gain confidence in the soft-
ware implementation. However, normally the use of such
techniques generates an overhead in the form of additional
effort spent on interfacing the software, e.g. instrumentation
or writing code wrappers, with the simulator or test envi-
ronment, thus working as a deterrent against changing the
software in small steps. It could thus be argued that a frame-
work should provide an uniform mechanism for interfacing
software components with test environments, simulators and
the target platform, so that the overhead of deploying and
running it would be independent of the target platform. For
such a mechanism to be useful it must be efficient and not
incur too high a run-time performance overhead.

3.4 Service-Oriented Architecture
Service-oriented architecture (SoA) is a fundamental architec-
tural model for software systems. The architecture consists
of services, which are self-contained reusable software com-
ponents, provided by a service provider and consumed by a
service requester [21]. SoA originates from the Information
Systems (IS) domain and web services, where the SoA pro-
vides a flexible approach to adapt the IS to changing business
needs. As an architectural concept, SoA may guide activities
at different levels of abstraction; programming, middleware
and business process levels [21].

More recently, attempts have been made to introduce SoA
concepts into the embedded systems domain, specifically
in pervasive systems [20], i.e. systems that tries to connect
and coordinate devices in our environment to satisfy user
needs [17]. The SoA model provides a feasible way when
trying to meet demands on flexible interconnection of devices
and composition of services. In contrast to fixed system
architectures, a key characteristic of SoA is that it supports
interoperability between various services by providing general
service concepts, while the exact content of the service may
change. This characteristic present additional opportunities
for evolution of SoA-based systems. However, the implica-
tions for safety certification of SoA systems are not yet fully
explored [15].

3.5 Safety-Critical Software
Development of safety-critical software is traditionally slow-
paced and process-focused, as depicted by several safety stan-
dards, e.g. IEC 61508 [9] and EN50128 [5]. In contrast, the
class of systems we discuss, in which flexibility and evolvabil-
ity are key characteristics, requires a more agile development
approach. However, such an approach should still be the
subject of operator and public safety considerations as well
as being compliant with safety standards.

Previous work on SoA in safety critical systems, involve
approaches that utilize the SoA for non-critical parts only
[15], as well as middleware for run-time verification [3]. The
aim for us is to enable the flexibility of SoA not only for non-
critical parts, but also for critical parts of a safety-critical
system, which excludes the first approach. The run-time
verification approach allows flexibility but must be efficient
enough for the real-time behaviour of the system.

When introducing new tools and methods in a safety-critical
development context it is imperative that they conform to
the applicable safety standards. Depending on the standard
the amount of evidence and assessment activities varies, e.g.
IEC 61508 says that development tools should be certified or
be proven by use, in some cases it would suffice to establish
their fitness for purpose [19]. For a tool to be assessable it
must be analysable and predictable, it must be transparent
to the user and the user should be confident that it works as
expected.

4. FRAMEWORK DESIGN
In this section we describe the SimPal framework. It was
developed to increase our understanding about the neces-
sary characteristics of a flexible development framework in
the context of in safety-critical development, and how such
frameworks can be realized. SimPal is built around a devel-
opment tool, which combines the PalCom middleware with
the commercial modelling tool Simulink.

PalCom was originally developed for the pervasive computing
domain, but has recently been proposed as a suitable archi-
tecture for real-time systems, in large part, due to its strong
emphasis on loose-coupling of configuration, coordination,
communication and computation.

Simulink on the other hand has been used for many years
and have become akin to an industrial de facto standard
for real-time systems modelling. It is particularly strong

at modelling control algorithms and other data flow based
algorithms. With the inclusion of Stateflow Simulink has
increased its ability to model state-full and event-driven
systems. Furthermore, it has several more appealing features
with regard to the capabilities identified in the previous
section, e.g. it is fairly easy to integrate with other software.

SimPal consists of three parts: the development tool, some
general architectural constraints that must be satisfied by
the developed software, and the development methodology
presented in this section, which should be followed to gain
the full advantage of the framework.

In this section we will describe the two main technologies
used in SimPal: PalCom and Simulink. After that, the
design of the SimPal tool, the architectural constraints of the
developed software and the intended work methodology for
working with SimPal are presented.

4.1 PalCom
PalCom is a service-oriented architecture [21] that was origi-
nally developed for the pervasive computing domain [17]. It
emphasizes loose coupling between configuration and coor-
dination of services and describes a protocol for discovering
and describing services on a network [20].

The top-level entities in the PalCom architecture are: devices,
services and assemblies, which are connected by connections
and exchange data with typed messages, called commands,
asynchronously. All entities have unique and persistent ids
and are able to describe themselves on the network.

A device can either be a software representation of a physical
device that are tightly coupled to the hardware or a virtual
device, like The Thing, which is a device that can dynamically
load and execute services and assemblies. Another important
virtual device is the Palcom Browser, which is used to discover
entities in a PalCom network and to construct assemblies.

A service is either bound, unbound or synthesized. Bound
services are tightly coupled with a certain device whereas
unbound services belong to The Thing. An unbound service
can migrate between different instances of The Thing in the
network. Synthesized services are service interfaces, provided
by assemblies, which expose some kind of desired capability
offered by the assembly. Each service carries a description
of the commands it requires and provides. A command is a
named message that contains a list of typed parameters.

Assemblies describe configuration and coordination of devices
and services, i.e. which services interact with each other and
how do they interact. The semantics of the assembly language
is fairly simple. Coordination is achieved by specifying a
list of event handlers that reacts to events, which can be
incoming messages or events related to connections. A typical
reaction is to extract some parameters from an incoming
message and put them in a new message, which is then
sent to another connected service. Configuration on the
other hand, is performed by binding services and devices to
the assembly using their unique IDs, and specifying which
connections that should be established between the services.

At the start of the design process, there existed two imple-
mentations of PalCom, one in Java and one in C. Although,

the C version has significantly better run-time performance
than the Java version the latter was chosen for SimPal. The
reason for that is that the C version does not implement
the full PalCom protocol and that it was considered harder
to integrate the C version with Simulink than the Java ver-
sion. Since then, an additional C version has been developed,
targeting small resource constrained embedded systems.

4.2 Simulink
Matlab is a tool that many engineers come in contact with
during their education and later in industry. It is a pow-
erful tool that can be used to design algorithms and build
mathematical models. The power of the tool comes from the
extendability of the software, especially the many toolboxes
that are shipped with it that address specific problem do-
mains, but also from the seamless integration of Java with
its interpreter.

Simulink is a simulation and modelling tool fully integrated
with Matlab that can be used to model algorithms using
classic boxes and lines notation. It is mostly used to design
and simulate control algorithms.

Over the years Simulink has been extended with several
toolboxes that enable certain capabilities, e.g. Stateflow,
which enables state machine based control algorithms to be
modelled using a modified version of the UML statechart
notation, and RealTimeToolbox, which makes it possible to
generate C and ADA code directly from model diagrams for a
specific target platform. The most common type of extension
is the model libraries that contains the building blocks that
Simulink models are composed of. Another interesting exten-
sion is the Verification and Validation toolbox that gives the
ability to link models and blocks to a requirements database,
e.g. Doors, or ordinary requirements documents, e.g. Word
or PDF.

New blocks can be constructed in several ways. The most
common is to create a subsystem containing the combination
of blocks that will provide the desired functionality. Another
way is to assign callbacks to a block, which are Matlab
functions that are executed at predefined times of a block’s
execution cycle, e.g. at initialization-time or after termination.
A third way to modify a block is to create a mask, thus
making the content of the block opaque to the end user.
When masking a block, certain properties can be hard coded
or left to the user to fill in at a later time. The most powerful
way to make a custom block is to use the level 1 and level 2
s-function blocks. The level 1 s-function block is a wrapper
around C-code callbacks, which defines the block behaviour.
The source code is compiled prior to model execution and
can be linked to external libraries. Level 2 s-functions are
wrappers around Matlab code that is interpreted when the
model is executed. Because the interpreter is fully integrated
with Java, Simulink can execute Java code using level 2
s-functions.

4.3 Integrated Development Tool
The main idea behind the design of the SimPal tool is to treat
Simulink models as PalCom top-level entities, i.e. devices,
services and assemblies, which can be dynamically deployed
and executed on a network through the simulation facility

Simulink
(model time)

<<Device>>
SimpalDevice

<<Service>>
SimulationService

<<Model>>
ServiceLogic

<<S-Function>>
SimpalPort

<<Command>>
Command

manages

Matlab/Palcom
(simulation time)

describes

wraps

Figure 1. A simplified architecture of the SimPal
development tool that shows the main entities and
their relations. The dividing line is not a strict de-
limiter separating two logically independent parts, it
is more an indication on what exist at design time
(right side) and what exist at run-time (left side).
For instance at simulation time, the Model entity,
which corresponds to a Simulink model, is translated
into a SimulationService.

in Simulink. Depending on the type of entity a model corre-
sponds to, its content will be interpreted differently. As an
assembly, a model describes the connections and passing of
messages between services and which synthesized services are
provided. As a service, a model describes a service interface,
i.e. provided commands and their parameters, and the com-
puting logic of the service. As a device, a model describes
provided services and assemblies. In the current version of
SimPal, only model as a service is implemented.

The SimPal tool consist of three parts: I) a Simulink library
that contains s-function blocks that describe PalCom com-
mands, which also corresponds to model inports and outports,
II) a virtual PalCom device, called the SimPal device, which
can dynamically load and unload services, and III) the sim-
ulation service, which is a generic PalCom service that can
be dynamically loaded and configured by a Simulink model
at simulation time. The SimPal device executes in the Mat-
lab base workspace and provides access for the simulation
services to the PalCom world. The simulation service is a
communication wrapper that publishes the service interface
that is defined by the SimPal inports and outports present in
the corresponding Simulink model. In Figure 1 a simplified
architecture of the tool is shown.

The SimPal Simulink library contains blocks for describing
incoming and outgoing commands of a PalCom service, and
are implemented as masked level 2 s-function blocks. A
command block describes an incoming or outgoing service
command with one parameter. The name of the command

and the type of the parameter is defined by the modeller in
the block mask. Moreover, the command blocks can be used
as sources and sinks in a model, which is to say that they
can be regarded, from a modelling perspective, as ordinary
model inports and outports. The difference is that instead
of being ports to an enclosing model they are ports to the
enclosing PalCom world.

The s-functions that the command blocks masks contain call-
backs to the SimPal device. These callbacks are used during
model simulation to, initially, create and configure a simu-
lation service for the model, and then, for the remainder of
the simulation, handle passing of message data between the
model and the service. In detail, when a model containing
SimPal command blocks is simulated a simulation service
is created with an interface that is described by the models
SimPal command blocks. It is then loaded into the SimPal
device, which announces its existence to the rest of the Pal-
Com network, which makes it possible to connect it with
other services and assemblies. The service logic resides in the
model and will execute according to the simulation policy
chosen. It is assumed that the policy is discrete fixed-step
simulation with infinite simulation time. SimPal will read
and send data through the simulation service whenever the
model state is updating. Thus, the full extent of Simulink’s
capabilities for monitoring, debugging and testing can still be
used for verification and validation of the model. However,
this have implications for the performance of the tool.

During the design of the SimPal tool the communication
model of PalCom, which is based on asynchronous messages,
had to be considered in relation to the execution model of
the Simulink simulation facility. We also had to factor in that
simulation time is different from real-time, i.e. simulation is
done as fast as possible. We considered two cases, discrete
event simulation and fixed step simulation. Note that the
cases only applies for input commands, for output commands
a model pushes data to the simulation service regardless of
the simulation model.

In the case of discrete event simulation, a model executes
whenever an event is generated in the model, and is inactive
between events. For instance, we could let a SimPal inport
generate an event whenever its wrapper service receives a
command that corresponds to the inport. This would make
the model reactive to incoming commands, which is in line
with how most PalCom service are written. Due to difficulties
with the threading model of Matlab and the design of the
discrete event simulation in Simulink, we deemed this case
to be infeasible to implement, at the time. However, we do
believe this case will have to be addressed in the future.

In the case of fixed step simulation, a model executes with a
predefined frequency. This is a simpler case than the discrete
event simulation case because the model is pulling data from
the SimPal device, as opposed to the SimPal device pushing
data to the model. Although the frequency is specified in
real-time units the model has to be modified to actually
execute at that frequency. One way is to use a s-function
that calls system functions that halt the execution for the
desired amount of time. A key issue is that during the time
the model is halted, the SimPal device should still be able to
receive commands.

4.4 Methodology and Constraints
The usefulness of a tool is not determined by its existence
but by how it is applied. During the design of the SimPal
tool several assumptions, i.e. constraints, about the software
architecture and development methodologies were made. In
this section we summarize these assumptions and present our
suggestion on how to use the tool in a development context.
What is described herein should not be conceived as a full-
fledged process model, which can be used as is. Instead,
we envision that the ideas and concepts presented will be
incorporated into an existing process.

Starting out with the architectural constraints, the service-
oriented design paradigm lies at the core of the framework,
which means that it should be possible to reason about
software systems developed with SimPal in SoA terms. It
follows that such a software system should be decomposable
into services. We define a service as a software component
that encapsulates some sort of functionality, which is exposed
through a well defined interface to its environment, which
can be the local device or several devices in a distributed
system.

Borrowing the ideas from PalCom about loosely coupled
coordination of services, we suggest that services should be
loosely coupled, be as small as possible and that complex
functionality is implemented using some sort of aggregated
service construct, e.g. assemblies. Because we are mainly
interested in real-time and safety-critical software systems
there is also a need for the ability to express tight coupling
of services to physical devices in the architecture.

The methodology that we suggest for SimPal assumes a work
flow where software functions are defined at one level, using
some kind of modelling language, and further refined at lower
levels, with the lowest being the source code implementation.
At each level, the functions would be verified using, for
instance, formal verifiers, simulation and testing, against the
previous level and constraints added at the current. Because
SimPal has a uniform deployment mechanism, there is no
clear dividing line between desktop testing, simulation or
real world testing. Thus, it would be possible to reuse test
cases developed for a higher level at lower levels. Although,
this requires that the interfaces of the software functions are
defined at an early stage and do not change that often.

5. FRAMEWORK EVALUATION
This section presents the evaluation of the SimPal framework.
The evaluation was performed in three steps: first, the feasi-
bility of the technical aspects of the framework was studied
by developing a soft safety controller for a mobile robot;
second, the framework was evaluated against the criteria
identified in Section 3 by reasoning about the current imple-
mentation; third, further evaluation was conducted with the
soft safety controller case, including live tests with hardware
components.

5.1 The Soft Safety Controller Case
The aim of the EnGroSS project is to develop a technology
demonstrator that implements the concept of loose coupling
in a mobile robotics systems. The concrete case is to develop
a mobile robot platform that can navigate and restock shelves
in a grocery store.

5.1.1 Background
One part of the EnGroSS demonstrator that is not coordi-
nated using PalCom, are the two safety laser scanners. The
scanners detect obstacles and foreign objects moving inside
their scanning range. If something is too close to the plat-
form the scanners will activate the emergency stop, which
immediately cuts the power to the wheels and forces the plat-
form to stop. The emergency brakes are activated without
regard to what other actions are currently performed by the
system, which might damage the platform as well as what it
was working with at the time, it might even create another
hazardous situation. Consider the following two scenarios.

During a routine transport of some heavy goods by the robot
platform, an employee intersects the robot’s path. The laser
scanners immediately activates the emergency stop and the
platform starts decelerating. Under normal conditions every-
thing would be fine but due to some unforeseen circumstances
the load is unbalanced, which has the consequence that the
robot tips and falls over the employee.

The second scenario unfolds in a grocery store during peak
hours. The robot platform is restocking shelves, trying to
avoid people by planning its path through less travelled aisles,
when the fire alarm goes off. People try to evacuate as fast as
possible through the nearest exits but there is a lot of people
and confusion. Due to bad timing the robot platform finds
itself blocking one of the emergency exits, unable to move
because people are trying to get past it, constantly triggering
the emergency stop.

The scenarios above might not seem especially likely but
they show that there are situations where an emergency stop
is not a safe state. Moreover, different contexts requires
different constraints. For instance, when the robot platform
is alone it can move at higher speeds because it does not
need to consider that people can appear around corners.
Whereas, when people surrounds it the speed at which tasks
are performed should be reduced, so as not to cause concern
or prevent it from stopping before a collision could happen.
Taken together, it would seem that there is a need for a more
intelligent safety controller.

The laser scanners used in the EnGroSS project supports
partitioning of their scan area into several different safety
zones. The reaction to a detected obstacle depends on the
zone it was detected in. Although, this is a great improvement
it is not flexible enough. The zones are configured offline
which means that we cannot change them on-the-fly according
to context, e.g. day time, night time. Secondly, we believe
that a safety controller need additional sensor data to fine-
tune its behaviour.

The idea behind the soft safety controller is to use software to
plan and make the transition to a safe(er) state smoother by
gracefully degrading the operation of the system. Ideally, by
going beyond mere partitioning of the local area into safety
zones, and by combining inputs from several different sources,
e.g. laser scanners and cameras.

5.1.2 Design and Evaluation
For the intents and purposes of this paper, we have made
a minimal implementation of the envisioned soft safety con-
troller, to show the utility of the SimPal framework.

Front
Laser
Scanner

Rear
Laser
Scanner

Arm
Control

Wheel
Control

Soft
Safety

Controller

Figure 2. An overview of the robot platform ser-
vices architecture for the soft safety controller dur-
ing Phase 1, including coordination. Boxes represent
services, triangles assemblies and lines flow of infor-
mation. The dotted rounded rectangle encloses the
components that were also considered in Phase 2.

The SimPal methodology is to gradually improve the soft-
ware under development until it is mature enough to be run
against the target platform. During the maturing process
the use of models, simulators, and explicit test cases are
encouraged. In line with this, we started out with developing
a platform simulator that can generate scan messages and
receive control commands. In the second phase we moved on
to using a hardware laser scanner demonstrator, which was
developed for the EnGroSS project. Both the simulator and
the demonstrator provides the same scan data interfaces.

Phase 1. In the first phase, which was presented in the
shorter version of this paper [13], we developed an initial
version of the soft safety controller as well as a robot platform
simulator, which provides several simulated services, e.g. a
scanner service and a platform service. Figure 2 shows the
components and their connections in this phase. Although,
not explicitly shown in the figure, the platform simulator is
represented by the Control and Scanner services.

The soft safety controller was modelled, using the SimPal
tool, as a service that consumes collision data from a scanner
service and calculates velocity constraints for the arm and
wheel services, see Figure 2. We connected the soft safety con-
troller service to the simulated scanner and platform services,
running them all on the same computer. The connections
were coordinated with PalCom assemblies. To gain further
insights, we conducted a small performance test were we sent
collision data from the platform simulator to the safety con-
troller and received back velocity commands. The measured
round-trip time was on the order of 200 ms.

Phase 2. In this phase, we have studied the implementation
of an improved version of the soft safety controller from

Laptop

<<SimpalDevice>> <<PlotDevice>>

<<PalcomBrowser>>

<<SimulatedPlatformDevice>>

Raspberry-PI

<<ScannerDevice>>

(2)

(3)

(1)

<<Service>>
simScannerService

<<SimulationService>>
safetyCtrlService

<<C-PalcomService>>
scannerService

<<C-PalcomService>>
dummyScannerService

<<Service>>
scopeService

<<Service>>
simPlatformCtrlService

SICK
s300

Figure 3. The deployment diagram of the soft safety controller system, showing all PalCom services and
devices. Services are represented by red boxes, devices with white, assemblies with green triangles and
physical devices with white boxes with black shadows. Arrows point in the direction messages flow. Three
lines have been marked with a number, which indicates the order they were connected with the system.

Phase 1, using the SimPal tool, and evaluated it against
a laser scanner demonstrator developed for the EnGroSS
project. The demonstrator consist of a SICK s300 laser
scanner connected to a Raspberry-PI, which publishes scan
data through a PalCom service. In addition, we developed a
generic plot service to monitor signals, e.g. scan data, during
run-time.

In Figure 3, the deployment diagram of the soft safety scanner
case can be seen. The numbers on the lines indicate the order
in which scanner services were connected for the first time
with the soft safety controller. First, we connected the new
controller to the simulated scanner service that were used in
the first phase, Secondly, we connected the controller to a
dummy scanner service on the Raspberry-PI. Finally, we ran
the controller directly against the real scanner service, also
on the Raspberry-PI device, with real scanner data.

Two performance measurements were conducted. The results
can be seen in Figure 4. The ”box plot” with label A, shows
the results from measuring the time from a command is re-
layed from the scanner service to the safety controller and
until a response is issued from the controller. The other ”box
plot” shows the results from conducting a similar measure-
ment as was done during the first phase.

5.2 Analysis
In this section we discuss strengths and weaknesses of the
SimPal framework. We will also reason about our experiences
from developing the soft safety controller. A summary of the
analysis results, mapped to the identified properties in Table
1, can be seen in Table 2. [Ax] in the text below refers to
argument x in Table 2.

The development of the soft safety controller showed that
the SimPal methodology and tool worked well together to
enable iterative development, which is a prerequisite for agile
development [A2]. It was possible to start small with simple
control logic, in a single service, and then gradually increase
the complexity of the software system, by first connecting
the soft safety controller service to the robot simulator, and
finally to the real laser scanner. Although we did not have
the opportunity to use the safety controller in the real robot
system, we are confident that the integration effort would be
similar to the cases we have considered in this paper, because
the service interfaces are identical in all cases.

Simulink is used by many engineers both in academia and in-
dustry and there is a wealth of experience and knowledge avail-
able online. Most notably is the Matlab Central, managed
by Mathworks, where users can exchange files, experiences
and get the newest information about the product. Many
engineering students, especially those studying automatic
control, learn how to use Simulink and relevant toolboxes
during their studies. Thus, it would seem that the threshold
of learning to use the SimPal tool would be fairly low [A1].

Simulink has good support for model testing and simulation
as well as tools for checking coverage. It also supports formal
verification of system properties and static code analysis of
generated code. Simulink’s built-in support for requirements
tracing, enables requirements tracing from models to require-
ment management tools, e.g. DOORS, or plain documents,
e.g. Word or PDF. In addition, there are several toolboxes
for specific application domains, e.g. signal processing, model
predictive control, power systems. It is also fairly easy to
integrate Simulink with third party tools. Taken together,

0 20 40 60 80 100 120 140 160 180

A

time/ms

150 200 250 300 350 400

B

time/ms

Figure 4. Box plots of the distribution of the time
delay between messages. The upper shows the mean
delay between incoming messages to the soft safety
controller and the return messages. The bottom,
shows the mean delay between outgoing messages
from the simulated platform service and incoming
messages to the simulated navigation service.

these features make Simulink, and hence SimPal, a viable
candidate in any development process that uses some or all
of these features [A4]. However, the complexity and closed
nature of Simulink makes it hard to implement certain kinds
of metaphors, for instance external event driven execution of
models.

The flexibility of the PalCom architecture makes it possible
to extend a system beyond what was originally intended.
Due to the loose coupling of configuration and coordination,
services can be added, removed and combined in a flexible
way through the use of the assembly construct [A5]. For this
to fully work it is imperative that the architectural constraints
mandated by the SimPal framework are satisfied. Through
the soft safety controller case, we have shown that SimPal
together with PalCom facilitates the extension and evolution
of an existing system, by providing good mechanisms for
coordination and deployment of services.

To show compliance with applicable safety standards a tool
must be analysable and have a predictable behaviour. Simulink
is a commercial tool with closed source code, thus the respon-
sibility of showing compliance with applicable standards falls
on the vendor. PalCom on the other hand is open-source
with freely available source code. The Java implementation is
around 30k lines of code, where large parts are automatically
generated. In comparison to the first C implementations of
PalCom that is only about 1.5k lines of code. It would be
reasonable to assume that the Java implementation is overly
complex [A6].

SimPal uses the current reference implementation of PalCom,
which is made in Java. The run-time performance of the
reference implementation is an issue, even without the added
overhead of using SimPal. If we measure the round-trip time
in a small system, similar to the soft safety controller, it will
be in the order of 20ms without SimPal and around 200ms
with SimPal. As a comparison the round-trip time using the
first C implementation of PalCom is 200µs. From this, it
would seem that the current implementation of SimPal is not

Table 2. Summary of the analysis mapped to the
arguments in Table 1.

Analysis ID

Simulink has a large user community and many
engineers are taught to use it during their stud-
ies.

A1, A3

SimPal supports iterative development with its
uniform deployment mechanism

A2

Simulink supports integration with third party
libraries and tools.

A3, A4

Simulink has several features that are useful in
safety-critical development, e.g. debugging, for-
mal verification, coverage analysis, requirements
tracing et.c.

A3, A6

PalCom enables flexible extensions of software
systems

A5

The complexity of the Java implementation of
PalCom makes it hard to show compliance with
safety standards.

A6

viable for anything other than very small or non time critical
cases. Switching from the Java implementation of PalCom to
the C implementation seems to be a promising approach to
increase the performance of SimPal. The C implementation
also has the benefit that it can be used together with the
code generation facility in Simulink thus enabling automatic
code generation of the complete system.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have identified what we believe to be some
of the necessary characteristics that a framework for flexi-
ble safety-critical software development should have, to be
successfully deployed in an industrial context. The identi-
fied characteristics are based on the ISO25010 quality in use
quality model, which focuses on how software is used in its
context.

Our key findings are that it should be easy to learn how to
use such a framework, it should be easy to use it and easy
to adapt the framework to existing methods. It should also
be easy to introduce into a development organization and
be able to interface with existing tools, e.g. requirements or
configuration management tools. To support agile develop-
ment a framework should minimize verification and validation
overhead so that the overhead is proportional to the size of
the change and not to the number of changes. From an archi-
tectural viewpoint a framework should accommodate flexible
extensions that go beyond what was initially intended. One
way would be to use SoA and loosely coupled components,
rather than tightly coupled. Finally to be able to build a
trustworthy safety case using the framework, it should be
analysable and predictable, as well as conform to applicable
safety standards.

We have also presented the SimPal framework, which is a
development framework for safety-critical software that was
developed and evaluated on the basis of the identified quality
characteristics. We show how it can be used to develop a

soft safety controller and describe in detail the premisses for
such a controller and how it was evaluated against both a
simulator and a technology demonstrator.

The SimPal framework is based on the PalCom middleware,
which is a loosely coupled service-oriented middleware that
decouples configuration and coordination of services, and
the commercial modelling tool Simulink, which is used for
designing service and system logic.

The design of the soft safety controller shows that the desired
functionality can be realized using the SimPal framework,
but run-time performance is a significant challenge that must
be addressed.

The evaluation of the tool against the criteria in Section 3
suggests that the choice of Simulink might be a good choice
as a modelling tool due to its strong user community and
its ability to integrate with other tools and processes. How-
ever, from the perspective of the SimPal tool, the complexity
and closed nature of Simulink might prevent its full realisa-
tion. The PalCom platform enables the SimPal framework
to support flexible system evolution and reduces verification
overhead due to the uniform deployment mechanism.

In the future we seek to develop a more robust implementa-
tion of the framework and try to evaluate the principles in
an industrial setting. Moreover, we are considering adding
new features such as model-as-an-assembly as well as im-
proving the support for specifying commands with multiple
parameters. Run-time performance is a key challenge for the
future. A possible way forward would be to replace the Java
version of PalCom with a C version, thus gaining the benefit
of a leaner implementation as well as the possibility to use
Simulink’s code generation facilities. We are also considering
investigating alternative modelling tools to Simulink that has
better support for event driven execution.

7. ACKNOWLEDGEMENTS
The work in this paper was funded by the Swedish Foundation
for Strategic Research under a grant to Lund University for
ENGROSS- ENabling GROwing Software Systems.

8. REFERENCES
[1] P. Baufreton, J. P. Blanquart, J. L. Boulanger,

H. Delseny, J. C. Derrien, J. Gassino, G. Ladier,
E. Ledinot, M. Leeman, P. Quéré, and B. Ricque.
Multi-domain comparison of safety standards. In
Proceedings of the 5th International Conference on
Embedded Real Time Software and Systems (ERTS2),
Toulouse, France, 2010.

[2] A. Collins, D. Joseph, and K. Bielaczyc. Design
research: Theoretical and methodological issues.
Journal of the Learning Sciences, 13(1):15–42, Jan.
2004.

[3] A. Coronato and G. De Pietro. A middleware
architecture for safety critical ambient intelligence
applications. In S. Balandin, R. Dunaytsev, and
Y. Koucheryavy, editors, Smart Spaces and Next
Generation Wired/Wireless Networking, volume 6294 of
Lecture Notes in Computer Science, pages 26–37.
Springer Berlin / Heidelberg, 2010.

[4] T. Dingsøyr, T. Dyb̊a, and N. B. Moe. Agile Software
Development - Current Research and Future Directions.
Springer Berlin Heidelberg, 2010.

[5] EN 50126 Railway applications - The specification and
demonstration of reliability, availability, maintainability
and safety (RAMS), 2007.

[6] I. O. for Standardization/International
Electrotechnical Commission et al. Iso/iec 9126.
Information Technology, Software Product Evaluation,
Quality Characteristics and Guidelines for their Use,
1991.

[7] R. France and B. Rumpe. Model-driven development of
complex software: A research roadmap. In 2007 Future
of Software Engineering, FOSE ’07, pages 37–54,
Washington, DC, USA, 2007. IEEE Computer Society.

[8] A. R. Hevner, S. T. March, J. Park, and S. Ram.
Design science in information systems research. MIS Q.,
28(1):75–105, Mar. 2004.

[9] International Electrotechnical Commission. IEC 61508,
Functional Safety of Electrical/ Electronic/
Programmable Electronic Safety Related Systems -
Part 3: Software requirements. 65A/550/FDIS, 2009.

[10] ISO/IEC 25010:2011 Systems and software engineering -
Systems and software Quality Requirements and
Evaluation (SQuaRE) - System and software quality
models, 2011.

[11] N. Leveson. Engineering a safer world: systems thinking
applied to safety. MIT Press, Cambridge, Mass., 2011.

[12] D. Mishra and A. Mishra. Complex software project
development: Agile methods adoption. Journal of
Software Maintenance and Evolution, 23(8):549–564,
2011.

[13] J. P. Notander, P. Runeson, and M. Höst. A
model-based framework for flexible safety-critical
software development: A design study. In Proceedings
of the 28th Annual ACM Symposium on Applied
Computing, SAC ’13, pages 1137–1144, New York, NY,
USA, 2013. ACM.

[14] J. Pedersen Notander, M. Höst, and P. Runeson.
Challenges in flexible safety-critical software
development – an industrial qualitative survey. In
J. Heidrich, M. Oivo, A. Jedlitschka, and
M. Baldassarre, editors, Product-Focused Software
Process Improvement, volume 7983 of Lecture Notes in
Computer Science, pages 283–297. Springer Berlin
Heidelberg, 2013.

[15] D. Rodrigues, R. Melo Pires, J. C. Estrella, M. Vieira,
M. Corrêa, J. B. Camargo Júnior, K. R. L. J. C.
Branco, and O. T. Júnior. Application of SOA in
safety-critical embedded systems. In G. Lee, D. Howard,
and D. Śl ↪ezak, editors, Convergence and Hybrid
Information Technology, volume 206 of
Communications in Computer and Information Science,
pages 345–354. Springer Berlin Heidelberg, 2011.

[16] RTCA/DO178B Software Considerations in Airborne
Systems and Equipment Certification, 1992.

[17] M. Satyanarayanan. Pervasive computing: vision and
challenges. IEEE Personal Communications, 8(4):10–17,
Aug. 2001.

[18] J. Srinivasan, R. Dobrin, and K. Lundqvist. ’State of
the art’ in using agile methods for embedded systems
development. In 33rd Annual IEEE International
Computer Software and Applications Conference,
COMPSAC, volume 2, pages 522–527. IEEE Computer
Society, 2009.

[19] I. Stürmer, D. Weinberg, and M. Conrad. Overview of
existing safeguarding techniques for automatically
generated code. In Proceedings of the second

international workshop on Software engineering for
automotive systems, SEAS ’05, pages 1–6, New York,
NY, USA, 2005. ACM.

[20] D. Svensson Fors, B. Magnusson, S. Gesteg̊ard Robertz,
G. Hedin, and E. Nilsson-Nyman. Ad-hoc composition
of pervasive services in the PalCom architecture. In
Proceedings of the 2009 ACM international conference
on pervasive services (ICPS’09), pages 83–92. ACM,
2009.

[21] L.-J. Zhang, J. Zhang, and H. Cai. Services Computing.
Springer Berlin Heidelberg, 2007.

ABOUT THE AUTHORS:

Jesper Pedersen Notander is a doctoral student in Computer Science at Lund
University, Sweden. He received a M.Sc. degree from Lund University in 2008 and
a Licentiate degree in Software Engineering from the same university in 2013. In
addition, he has worked a couple of years as a software engineer in the aerospace
industry. His research interests include safety-critical software development, service-
oriented architectures, model-based development and runtime-verification.

Per Runeson is a professor of software engineering at Lund University, Sweden, and
is the leader of its Software Engineering Research Group. His research interests
include software development methods, in particular for verification and validation.
He has co-authored hand-books for experiments and case studies in software
engineering, serves on the editorial board of the Empirical Software Engineering
Journal and several IEEE program committees.

Martin Höst is a Professor in Software Engineering at Lund University, Sweden. He
received a M.Sc. degree from Lund University in 1992 and a Ph.D. degree in
Software Engineering from the same university in 1999. His main research interests
include software process improvement, software quality, risk analysis, and empirical
software engineering. The research is mainly conducted through empirical methods
such as case studies, controlled experiments, and surveys. He has published more
than 60 articles in international journals and proceedings from conferences and
workshops.

Genealogical Insights into the Facts and Fictions
of Clone Removal

Minhaz F. Zibran
University of Saskatchewan
minhaz.zibran@usask.ca

Ripon K. Saha
The University of Texas at Austin

ripon@utexas.edu

Chanchal K. Roy
University of Saskatchewan

croy@cs.usask.ca

Kevin A. Schneider
University of Saskatchewan

kas@cs.usask.ca

ABSTRACT
Clone management has drawn immense interest from the
research community in recent years. It is recognized that
a deep understanding of how code clones change and are
refactored is necessary for devising effective clone manage-
ment tools and techniques. This paper presents an empirical
study based on the clone genealogies from a significant num-
ber of releases of nine software systems, to characterize the
patterns of clone change and removal in evolving software
systems. With a blend of qualitative analysis, quantitative
analysis and statistical tests of significance, we address a
number of research questions. Our findings reveal insights
into the removal of individual clone fragments and provide
empirical evidence in support of conventional clone evolu-
tion wisdom. The results can be used to devise informed
clone management tools and techniques.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—restructuring, and reverse engineering

General Terms
Experementation, Management, Measurement

Keywords
clone removal, clone evolution, refactoring, reengineering

1. INTRODUCTION
Duplicate or similar code fragments are known as code clones.
Previous studies report that software systems typically con-
tain 9%-17% [40] of code clones, and the proportion may
be as high as 50% [26, 27]. Code snippets that have iden-
tical source text except for comments and layout are called

Copyright is held by the authors. This work is based on an ear-
lier work: SAC’13 Proceedings of the 2013 ACM Symposium on
Applied Computing, Copyright 2013 ACM 978-1-4503-1656-9/13/03.
http://doi.acm.org/10.1145/2480362.2480573.
.

Type-1 (exact) clones. Syntactically similar code snippets,
where there may be variations in the names of the identi-
fiers/variables are known as Type-2 clones. Code fragments
that exhibit Type-2 clone similarity but also have other dif-
ferences such as added, deleted or modified statements are
Type-3 clones.

Code cloning is a popular code reuse mechanism that is used
to speedup the development process and facilitate indepen-
dent evolution of similar program units. However, the use of
code clones may be detrimental at times. For example, copy-
pasting a code fragment already containing an unknown bug
may cause fault propagation. Moreover, during the mainte-
nance phase, a change in a clone fragment may necessitate
consistent changes in all of its cloned fragments, and any
inconsistencies may introduce vulnerabilities [41, 42, 43].
Thus, code clones may have a significant impact on the de-
velopment and maintenance of software systems.

Despite ongoing research on the positive and negative ef-
fects of code clones [11, 12, 15, 21, 24, 25, 36], researchers
and practitioners have come to an accord for the need of
active and informed clone management [44, 45] including
documentation and removal of clones through refactoring.
However, code clones can often be desirable, and aggressive
removal of clones through refactoring may not be a good
idea [15, 41, 42, 43], given the risks and efforts involved
in such activities. In this regard, a number of classification
schemes [2, 13, 16, 33], metric based selection approaches [1,
4, 10], and an effort model [41, 42, 43] have been proposed
to identify potential clones for refactoring. Still, for many
systems, clone management and removal is yet to be a part
of the daily maintenance activities [8]. Despite more than
a decade of software clone research, clone management re-
mains far from industrial adoption, and this area has gained
more focus from the community in recent years [47].

A deep understanding of how individual clones change dur-
ing their evolution, and which criteria cause their removal
from the system, can help in devising effective strategies and
tool support for clone management. A number of studies on
near-miss clone evolution [30, 32, 40, 46] are found in the
literature, which attempt to inform clone management [39,
44, 47]. These studies on clone evolution and programmers’
psychology lead to some common beliefs and at times even
contradictions about the traits of clone evolution. For exam-
ple, the study of Kim et al. [15] suggests that many clones

are volatile (i.e., disappear shortly after they are created),
while the study of Lozano and Wermelinger [18] suggests
otherwise.

This paper focuses on the patterns of changes and removal
of code clones during the evolution of software systems. In
particular, we formulate the following eight research ques-
tions to capture different characteristics of clone change and
removal. Some of the research questions correspond to com-
mon beliefs (or, contradictions) in the community; but we
want to develop empirical evidence based on a systematic
genealogy-based study on clone change and removal in evolv-
ing software systems.

RQ1: Do the sizes of the groups of clones make any dif-
ference in clone removal in practice? — Kim et al. [14]
suspected that frequently copied code fragments (i.e., larger
clone-groups) can be good candidates for clone refactoring.

RQ2: Do the sizes of the individual clone fragments in terms
of the number of lines impact clone removal in practice?
— Larger clone fragments can be attractive candidates for
refactoring, as conjectured by Kim et al. [14].

RQ3: For a group of clones, does the distribution of the
clones in the file system hierarchy impact their removal in
practice? — Göde [8] reported that the developers were
more interested in refactoring closely located clones.

RQ4: Is there any relationship between any particular type
of changes in the clones and their removal? — This is still
an open question, as far as we are concerned. If there ex-
ists any relationship between a particular type of changes
and clone removal, the clone management tools can focus
on supporting that category of changes.

RQ5: How frequently do the clones experience changes be-
fore they are removed from the system? — There is an on-
going debate on the stability of code clones [9, 17, 20].

RQ6: Does the granularity (entire function bodies or syn-
tactic blocks) of clones make any difference in their removal
in practice? — A recent study of Göde [8] reported many
instances of removal of block clones by extract method refac-
toring.

RQ7: Does the textual similarity in the source code of the
clones have any effect in the removal of clones in practice?
— Very similar (e.g., Type-1) clones can be expected to be
easier to refactor than very dissimilar (e.g., Type-3) clones.

RQ8: During the evolution of the software systems, when
does clone removal take place? — This question addresses
the aforementioned contradiction about the volatility of clones.

To address the research questions, we carry out a systematic
study based on code clone genealogy [15, 31], which maps the
individual clone fragments across subsequent releases over
their evolution. We investigate the changes and removal of
individual clones in 329 releases of nine diverse open-source
software systems written in Java, C, and C#. Then we
analyze them against a wide range of metrics and character-
ization criteria. In the light of a combination of qualitative

Ri Ri+1 Ri+2 Ri+3

A

B

C

A

B

C

A

B

C

A

B

CN
o

C
ha

ng
e

N
o

C
ha

ng
e

A

B

C

A

B

C

A

B

C

C
on

si
st

en
t C

ha
ng

e

In
co

ns
is

te
nt

 C
ha

ng
e

A

B

C

A

B

C

A

B

C

A

B

C

C
on

si
st

en
t C

ha
ng

e

N
o

C
ha

ng
e

N
o

C
ha

ng
e

A

B

C

A

B

C

A

B

CN
o

C
ha

ng
e

N
o

C
ha

ng
e

A

C

In
co

ns
is

te
nt

 C
ha

ng
e

 Ri+4
(Last Release)

1

2

3

Figure 1. Different types of clone genealogies

analysis, quantitative analysis and statistical tests of signif-
icance, we derive the answers to the research questions.

We believe, such an empirical study on the characteristics of
changes and removal of individual near-miss clone fragments
is timely and addresses a gap in the literature. Our study is
based on genealogies of near-miss clones including not only
Type-1 and Type-2 clones, but also Type-3 clones. This
work is an extension to our previous work [46], which was the
first genealogy-based study on the evolution, changes, and
removal of near-miss code clones including Type-3. In this
work, we significantly extend our previous study by includ-
ing 101 more releases of three additional subject systems, an
additional research question, and more in-depth analysis.

The rest of this paper is organized as follows. In Section 2,
we introduce the terminology and metrics used in our study.
In Section 3, we describe the setup and procedure of our
empirical study. Section 4 presents the findings our study.
In Section 5, we discuss the possible threats to the validity
of our study. Section 6 accommodates related work, and
Section 7 concludes the paper.

2. TERMINOLOGY AND METRICS
In this section, we introduce the terminology and metrics
used in this paper to characterize the changes and removal
of code clones. Some of the metrics and and criteria are
adopted from earlier studies found in the literature [3, 7, 8,
15].

Clone Genealogy: A set of clone fragments that are clones
of each other form a clone-group. A clone genealogy refers
to a set of one or more lineage(s) originating from the same
clone-group, whereas, a clone lineage is a sequence of clone-
groups evolving over a series of releases of the software sys-
tem. Figure 1 shows several examples.

Consistent and Inconsistent Change: If all clones in
the clone-group experience the same set of changes during
the transition between releases, then such changes are char-
acterized as being a consistent change, otherwise the changes
are regarded as being inconsistent.

Table 1. Software systems subject to our empirical study

Prog. Subject No. of Releases Dates (mm/dd/yy) Duration Source Lines of Code
Lang. System Releases Start End Start End (months) (SLOC ranges)

dnsjava 50 0.9.2 2.1.1 04/19/99 02/10/11 131 6,290 – 15,018
Java JabRef 27 1.5 2.4.2 08/15/04 11/01/08 50 22,041 – 69,170

ArgoUML 48 0.27.1 0.32.beta2 10/04/08 01/24/11 26 176,618 – 202,555
ZABBIX 31 1.0 1.8.4 03/23/04 06/01/11 86 9,252 – 62,845

C Conky 28 1.1 1.8.1 06/20/05 10/05/10 62 6,555 – 39,810
Claws Mail 44 2.0.0 3.7.9 06/30/06 04/09/11 63 1,33,642 – 1,89,786
CruiseControl 31 0.7.rc1 1.8.4 11/08/04 09/01/13 98 35,895 – 1,82,032

C# iTextSharp 22 5.0.0 5.4.4 12/08/09 09/16/13 45 1,72,573 – 2,17,328
ZedGraph 48 1.1 5.1.5 08/02/04 12/12/08 52 2,439 – 26,433

Consistently Changed Clone-Group: If the genealogy
of a clone-group has any consistent change pattern(s) but
does not have any inconsistent change patterns during evo-
lution, it is classified as a consistently changed clone-group.
The clone-group associated with the second genealogy in
Figure 1 is an example of a consistently changed clone-group
as there is a consistent change between releases Ri+1 and
Ri+2.

Inconsistently Changed Clone-Group: If the geneal-
ogy of a clone-group has any inconsistent change pattern(s)
throughout the entire evolution period, it is characterized
as an inconsistently changed clone-group. The clone-group
associated with the third genealogy in Figure 1 is an in-
consistently changed clone-group as there is an inconsistent
change between releases Ri+2 and Ri+3.

Static, Alive, Dead Clone-Group: Static clone-groups
are those which propagate through subsequent releases hav-
ing no textual change in the clones. A clone-group is called
dead if it disappears before reaching the final release under
consideration, otherwise the clone-group is considered alive.
The clone-groups associated with the first, second and third
genealogies in Figure 1 represents static, dead, and alive
clone-groups respectively.

Textual Similarity: The textual similarity between two
code snippets S1 and S2, denoted by I(S1, S2), is determined
by calculating the identical lines with respect to their sizes,
as defined by the following formula1.

I(S1, S2) =
2× |`1 ∩ `2|
|`1|+ |`2|

(1)

where `1 and `2 are the ordered sets of pretty-printed lines
in S1 and S2 respectively. |`1 ∩ `2| is the number of com-
mon ordered lines between `1 and `2, calculated using the
longest common subsequence (LCS) algorithm. The textual
similarity of a clone-group G, denoted as I(G) is the aver-
age of the textual similarities between all clone pairs in that
group. Mathematically,

I(G) =

∑
Si,Sj∈G

I(Si, Sj)(|G|
2

) (2)

1In the area of Information Retrieval, this similarity mea-
surement is known as the Dice Coefficient.

Entropy of Dispersion: We used an entropy measure to
characterize the file level physical distribution of the clones
in a clone-group. Such an entropy measurement, sometimes
referred to as Shannon entropy, is commonly used in the
area of Information Theory. In this work, the entropy of
dispersion of the clones in clone-group G is calculated using
Equation 3 as follows:

entropy(G) =
∑
i∈FG

−pi log(pi) (3)

where, FG denotes the set of distinct files hosting the clones
in clone-groupG, and pi denotes the probability of the clones
being located in file i.

For example, if all the clone fragments reside in the same
file, the dispersion entropy will be 0.0. If the entropy is low,
clones are densely located in only a few files. If the entropy
is high, the clones are scattered across different files.

3. STUDY SETUP
To investigate the research questions outlined in Section 1,
we study the clone genealogies across releases of nine diverse
open-source software systems (Table 1) written in Java, C,
and C#.

In the selection of the subject systems, we followed a number
of criteria. First, we tried to include software systems that
had reasonably large sizes and large number of releases. In
computation of a system’s size, we took into account only
the source code lines (SLOC) written in the particular pro-
gramming language that the software system is categorized
in Table 1. We excluded comments, blank lines, and lines of
code written in any other programming languages. Second,
in our study, we tried to include subject systems from diverse
application domains. Third, we preferred those open-source
software systems, which were used in earlier studies [15, 30,
31, 40] reported in the literature.

3.1 Extraction of Genealogies
For the extraction of clone genealogies, we used an extended
version of gCad [31] clone genealogy extractor that we de-
veloped. gCad can construct and classify genealogies of all
three types (Type-1, Type-2, and Type-3) of clones that we
are interested in. Details of how gCad operates and com-
putes clone genealogies can be found elsewhere [31]. As per

Figure 2. gCad settings for genealogy extraction

the need of this study, we significantly extended and cus-
tomized the tool with a carefully designed graphical user
interface (GUI), and a set of appropriate features to com-
pute the necessary metrics. For the purpose of our study,
we carefully chose a set of gCad’s configuration parameters
as shown in Figure 2.

For the detection of code clones, we selected the NiCad-

2.6.3 [5, 6, 29] clone detector, which is a state-of-the-art
clone detection tool reported to be effective in detecting both
exact (Type-1) and near-miss (Type-2 and Type-3) clones
with high precision and recall [28, 29, 34]. gCad invokes
NiCad to separately detect clones from every release of each
of the subject systems. In invoking the clone detector, some
of the gCad parameters are passed to NiCad to guide the
process of detecting Type-1, Type-2, and Type-3 clones at
the chosen granularity (syntactic blocks for our study) and
dissimilarity threshold (0.3 for our study).

The dissimilarity threshold (Figure 2) is a size-sensitive dis-
similarity threshold that plays a vital role in guiding NiCad

in the detection of Type-3 clones. For our study, the dissim-
ilarity threshold was set to 0.3, which signifies that NiCad

detects two code fragments as clones if at least 70% of their
pretty-printed text lines are the same (i.e., if at most 30%
lines are different). The normalization option“blind-renaming”
tells NiCad to ignore the differences in the names of identi-
fiers/variables, and thus it is a significant parameter for the
detection of Type-2 clones.

From the clone detection results obtained from NiCad, for
each of the subject systems, we separately constructed the
clone genealogies using gCad. We operated gCad in ‘strict’
mode to construct and characterize clone genealogies. In
‘strict’ mode, gCad captures and takes into account all types
of changes in the source code lines of clone-pairs, irrespective
of whether those changes took place in their corresponding
similar or dissimilar lines of code. Details of how gCad op-
erates in different modes can be found elsewhere [31].

3.2 Investigation
We examined all the dead genealogies to see how the clones
were removed. We also examined how the individual clone
fragments changed during their evolution over a series of re-

leases. Since, the inconsistent changes to clones are believed
to be a common phenomena that produce vulnerabilities in
a system [40, 41, 43], we characterized the clone changes as
consistent versus inconsistent. In addition, we captured how
frequently a clone-group changes during the evolution before
its removal. For quantitative analysis, we computed the nec-
essary metrics according to the categorization described in
Section 2.

4. FINDINGS
The findings of our study are derived from qualitative and
quantitative analyses of the changes and removal of individ-
ual clone fragments. We also apply the statistical Mann-
Whitney-Wilcoxon (MWW) test [19] with α = 0.05, to de-
termine the statistical significance of the findings. Using the
Shapiro-Wilk test [19] and Q-Q plot [19], we examined the
distribution of the data, and found that some of the observa-
tions exhibited normal distributions while some others did
not. Therefore, we chose to use the MWW non-parametric
test, which does not assume the normal distribution of the
data, and thus, is appropriate for data that exhibit or do
not exhibit normal distribution.

4.1 Size of the Clone-Groups
To capture the relationship between the number of frag-
ments in a clone-group and clone removal, we computed the
average number of fragments in the removed clone-groups
and that of the alive clone-groups for each of the subject
systems (Table 2). As seen in Table 2, for all the subject
systems, the average size of the alive clone-groups is higher
than those of the removed clone-groups. During our man-
ual investigation, we found that the developers refactored
clone-groups that had only two or three clone fragments.
Similarly, we found that in JabRef, there were 74 clone-
groups having more than three fragments, and only four of
them were refactored. This gives the impression that de-
velopers are more inclined to remove smaller clone-groups.
To statistically verify this, we address the second research
question RQ1, and formulate our null hypothesis as follows.

H1
0 : The size of a clone group does NOT make a difference

in clone removal in practice.

A MWW test (P = 0.35) fails to reject (as, P > α) the null
hypothesis, which implies that the difference is not statis-
tically significant. Hence, we answer the research question
RQ1 as follows.

Ans. to RQ1: The size of the clone-groups (in terms of the
number of member clone fragments) does not make a statis-
tically significant difference in clone removal in practice.

Although, in our study, the sizes of the removed clone-groups
(in terms of the number of clone fragments) appears to be
consistently lower than the alive clone-groups, this might
have happened simply by chance in the software systems in
our study. A larger study with many software systems may
be required to further investigate the possibility of statistical
significance of the pattern we found between the sizes of the
clone-groups and their removal.

Table 2. Sizes of removed and alive clone-groups

Prog. Subject Avg. Sizes of Clone-groups
Lang. System Removed Alive

dnsjava 2.25 2.75
Java JabRef 2.31 4.17

ArgoUML 2.12 9.12
ZABBIX 2.31 4.53

C Conky 2.37 9.31
Claws Mail 2.88 2.95
CruiseControl 2.32 3.58

C# iTextSharp 2.21 5.80
ZedGraph 2.15 2.50

4.2 Size of the Clone Fragments
The sizes of the clone fragments can be expected to have
a relationship with the refactoring effort, especially when
the candidate clone-group includes near-miss (Type-2 and
Type-3) clones beyond Type-1.

To examine the relationship between clone removal and the
SLOC per clone fragment in the clone-groups, we separately
computed the average number of pretty-printed SLOC per
fragment for the removed clones as well as for the alive
clones. We also calculated the standard deviations for each
of the measurements to capture the degree of variations. The
results are presented in Table 3.

As can be observed from Table 3, there are subtle differ-
ences in the sizes of the clone fragments of both the re-
moved and alive clone-groups. For six of the nine subject
systems (ZabRef, ArgoUML, ZABBIX, Conky, iTextSharp, and
ZedGraph), the average sizes of clone fragments of removed
clone-groups appear to be significantly higher than those of
the alive clone-groups. Hence, the anticipation of Kim et
al. [14] saying – developers are more interested in getting
rid of larger clones – appears to be true.

Addressing the research question RQ2, we now formulate
our null hypothesis as follows.

H2
0 : The size of the individual clones in terms of number of

lines does NOT impact clone removal in practice.

A MWW test (P = 0.001) over the series of sizes for the re-
moved and alive clones rejects (as, P < α) the null hypoth-
esis. From the analysis described above, we answer research
question RQ2 as follows.

Ans. to RQ2: The size of the individual clones in terms of
number of lines does have a statistically significant impact on
clone removal in practice, and larger clone fragments appear
to be attractive for removal in practice.

4.3 Entropy of Dispersion
In Table 4, we present the entropy of dispersion of both
the removed and alive clones for all the subject systems.
From the developer’s perspective, refactoring/removal of co-
located clones may require less effort than that needed for
refactoring clones scattered over the code base. This can be

Table 3. Average sizes (SLOC) of clone fragments

Subject Removed Alive

S
D

=
S
ta

n
d
a
rd

D
ev

ia
ti

o
n

System Average SD Average SD
dnsjava 10.00 3.00 11.00 5.00
JabRef 17.00 15.00 13.00 9.00
ArgoUML 16.00 13.00 15.00 19.00
ZABBIX 26.00 25.00 21.00 21.00
Conky 20.00 23.00 15.00 7.00
ClawsMail 15.00 9.00 16.00 18.00
CruiseControl 8.85 4.50 9.46 5.61
iTextSharp 13.99 13.62 10.76 11.00
ZedGraph 15.70 15.45 12.34 12.67

expected to hold true due to several reasons. In the refactor-
ing of scattered clones the developers might need to spend
much time and effort to navigate to, understand the con-
texts, and make careful modifications at different locations
of the code base.

In Table 4, we see that for each of the subject systems, the
average entropy of dispersion for the removed clones is much
lower than that for the alive clones. This indicates those
clone-groups whose member clone fragments are closely lo-
cated in the code base are relatively more attractive for
refactoring/removal. To determine whether the initial ob-
servation significantly supports the expectation, we again
conducted a MWW test with the null hypothesis as follows.

H3
0 : For a group of clones, the distribution of individual

clones in the file system hierarchy does NOT impact
their removal in practice.

The hypothesis addresses the research question RQ3. A
MWW test (P = 0.233) between the entropy values for both
the removed and alive clones (over all the systems) fails to
reject (as, P > α) the null hypothesis. This implies that
there exists no relationship between the entropy of disper-
sion and clone removal in practice. Therefore, we derive the
answer to research question RQ3 as follows.

Ans. to RQ3: For a group of clones, the distribution of
individual clones in the file system hierarchy does not have a
statistically significant impact on their removal in practice.

As we delved deeper through manual investigation, we found
a strange phenomenon in the relationship between entropy
and the number of clone fragments that were removed. Most
of the removed clone-groups had two fragments, if their en-
tropy was greater than zero, i.e., they were not really located
in the same file. For example, in JabRef and ZABBIX, devel-
opers refactored 37 and 43 clone-groups respectively, all of
which had entropy higher than zero. Among them only two
clone-groups in JabRef and 10 clone-groups in ZABBIX had
three clone fragments, while the rest had only two fragments.

4.4 Change Patterns
Despite the realized advantages of code cloning, it is also
true that code clones may have a significant impact on soft-
ware development and maintenance in several ways. First,

Table 5. Removal of clone-groups classified by change patterns

Prog. Subject Static Clone-Groups Consistently Changed CG Inconsistently Changed CG
Lang. System Total Removed [%] Total Removed [%] Total Removed [%]

dnsjava 60 27 45.00 8 3 37.50 49 27 55.10
Java JabRef 217 52 23.96 53 3 5.66 132 15 11.36

ArgoUML 1435 109 7.60 39 4 10.26 440 19 4.31
ZABBIX 166 88 53.01 61 18 29.51 109 35 32.11

C Conky 121 44 36.36 19 7 36.84 37 16 43.24
ClawsMail 445 58 13.03 172 7 4.07 304 7 2.30
CruiseControl 528 187 35.41 119 35 29.41 388 133 34.27

C# iTextSharp 1259 99 7.86 103 8 7.76 325 66 20.31
ZedGraph 225 161 74.22 33 12 36.36 79 45 56.96

Table 4. Comparison of entropy of dispersion

Prog. Subject Clones
Lang. System Removed Alive

dnsjava 0.71 0.90
Java JabRef 0.53 0.98

ArgoUML 0.82 1.30
ZABBIX 0.35 0.53

C Conky 0.18 0.24
Claws Mail 0.30 0.70
CruiseControl 0.18 0.23

C# iTextSharp 0.22 0.38
ZedGraph 0.17 0.10

the reuse by copy-pasting of any code segment that already
contains unknown faults, results in propagation of those
faults to all the copies. Second, when a change is made
in a code fragment, consistent changes are often expected
in all its clone fragments, while any inconsistencies may in-
troduce new faults. Third, if a bug is found in a certain
code fragment, there remains a possibility that similar bugs
can be found in the clones of the fragment, and thus may
necessitate consistent propagation of that bug-fix to all the
clones.

Thus, whether the clones changed consistently, inconsistently,
or remained static during the evolution of a software sys-
tem, may have implications in clone management in fu-
ture releases. Therefore, we categorized the clones based
on whether they remained unchanged, or changed consis-
tently or inconsistently, and what percentage of such clones
were actually removed during the evolution of the system.
For each of the systems, the total number of clones of each
of these three categories and the percentage of them that
were removed, are presented in Table 5.

As we can see in Table 5, for each of the subject system, the
number of static clone-groups is the highest while the num-
ber of the consistently changed clone-groups is the lowest.
To examine any trends in the existence of static, consis-
tently changed, and inconsistently changed clone-groups in
the systems, we again conducted MWW tests between each
two of the three categories of changes (total number) oc-
curred in the clone-groups over all the systems. The results

Table 6. MWW tests over of categories of changes

Change
No Change

Consistent Inconsistent
Types Change Change

No Change - P = 0.003 P = 0.158

Consistent
P = 0.003 - P = 0.042Change

Inconsistent P = 0.158 P = 0.042 -
Change

Table 7. MWW tests over removal of clones

Clone Static Consistently Inconsistently
Categories Changed Changed

Static - P = 0.31 P = 0.695

Consistently P = 0.31 - P = 0.536Changed
Inconsistently P = 0.695 P = 0.536 -Changed

of the MWW tests are presented in Table 6, which suggest
significant difference in occurrence of the three categories of
changes (as, P < α), except that the difference in the num-
ber of inconsistent changes clones and no-changes are found
to be statistically insignificant (as, P > α).

With respect to clone removal, from Table 5, we see that
for six of the nine systems (JabRef, ZABBIX, ClawsMail,
CruiseControl, iTextSharp, and ZedGraph), the majority
of the removed clones are static clone-groups. The removal
of inconsistently changed clone-groups were found to oc-
cur most often in two of the systems (dnsjava and Conky),
whereas, the removal of consistently changed clones domi-
nated in ArgoUML.

A high-level perception from the results in the table may
indicate that the static clone-groups can be more susceptible
to removal. To verify such an observation, we carried out
MWW tests between each pair of the three categories of
clone removal over all the systems. The results of the MWW
tests, as presented in Table 7, also suggest that there is no
significant difference in the removal of static, consistently
changed and inconsistently changed clone-groups (as, P > α
in all cases).

Table 8. Frequency of changes before removal

Prog. Subject Change Frequency
Lang. System 1 2 >2 Average

dnsjava 16 9 5 1.80
Java JabRef 11 4 3 1.72

ArgoUML 17 4 2 1.48
ZABBIX 30 16 7 1.74

C Conky 10 8 5 1.95
ClawsMail 9 2 5 1.57
CruiseControl 103 45 20 0.75

C# iTextSharp 62 11 1 0.50
ZedGraph 40 12 5 0.39

These observations lead to the answer to the research ques-
tion RQ4 as follows.

Ans. to RQ4: The majority of the clones do not experi-
ence any changes during their evolution. Those clones that
experience changes, majority of those clone-groups undergo
inconsistent changes. However, there is no statistically sig-
nificant relationship between any particular type of changes
in the clones, and their removal at a later release.

4.5 Frequency of Changes
The frequency of changes to the clone-groups is an important
criterion in clone management, since changing source code
can be expensive, while making consistent changes to clones
may involve significant effort and risks. Indeed, the modifi-
cations of a clone fragment needing effort, and the required
effort can be multiplied by the size of the corresponding
clone-group, to make consistent changes to all clone frag-
ments in the clone-group. This is one of the areas where
clone management tool support may contribute by facilitat-
ing clone merging, or consistent change propagation.

Thus, we examined how frequently the clone-groups under-
went changes before their removal. In Table 8, we present
the number of clone-groups that, before removal, underwent
changes only once, twice, and more than twice. As seen in
the table, most of the removed clones were changed only
once. For the clone-groups that changed at least once, their
average change frequency is less than two, over all the sub-
ject systems. From our manual verification, we found that
very few clone-groups underwent changes more than twice
before their removal. On the other hand, we also found many
clone-groups remained alive although they experienced mi-
nor or significant changes. However, we confined our focus
to the changes of the removed clone-groups to get a complete
picture over the entire life-time of the clone-groups. Now, we
derive the answer to the research question RQ5 as follows.

Ans. to RQ5: Most clones do not undergo frequent changes
before their removal.

4.6 Level of Granularity
The extract method refactoring pattern is perhaps the most
highlighted technique for removing clones at the granularity
of syntactic blocks. Thus, we may expect evidence of many
instances of block clone removal. Alternatively, functions

typically contain a somewhat complete implementation of
certain features or program logic and so it may be easier to
remove/refactor clones at the granularity of entire function
bodies, rather than at the granularity of smaller syntactic
blocks.

To determine whether there exist any relationships between
clone removal and clone granularity, we examined both lev-
els of granularities – function/method and syntactic block.
Note that the body of a function also constitutes a block.
Therefore, we distinguish true functions clones from the true
block clones. A true function clone fragment spans the en-
tire body of a function, whereas a true block clone must not
constitute the entire body of a function.

Extended gCad is capable of differentiating true function
clones from the true block clones. Any clone-group that
is composed of only true function clones is categorized as
a group of function clones, whereas, clone-groups consisting
of only true block clones are categorized as groups of block
clones. Separate genealogies are constructed for the clones
at these two levels of granularity.

Over all releases of each of the subject systems, the to-
tal number and proportions of both the groups of func-
tion clones versus the block clones are presented in Table 9.
The clone detection results for each of the systems identified
clone-groups that contained both true function clones and
true block clones. Therefore, it is not possible to categorize
such a group as a group of only true function clones or only
true block clones. This is why the total number of clone-
groups reported in Table 9 is lower than that of Table 5.
Addressing the research question RQ6, we now formulate
our null hypothesis as follows.

H6
0 : The granularity (entire function bodies or syntactic blocks)

of clones does NOT make any difference in their re-
moval in practice.

A MWW test (P = 0.93) over the proportions of the removal
of both true function and block clones fails to reject (as,
P > α) the null hypothesis.

Table 9 shows that developers remove both function and
block clones as per their needs, as we do not see significant
differences between the proportions of removal of function
clones and block clones. For ZABBIX and Conky, the pro-
portion of block clones removal is slightly higher. It seems
that the clone removal rates for the two larger systems, Ar-
goUML and Claws Mail are far lower than the smaller sys-
tems. On the other hand, it appears that the developers
of the relatively small systems dnsjava, ZABBIX, and Conky

were more aware of the clones and were active in removing
them through refactoring. From manual investigation, we
found only one and two Type-1 function clones in dnsjava

and Conky respectively. Though as many as eight Type-1
function clones were found in ZABBIX, seven of them were
removed during the evolution of the system. Based on the
above discussion, we now derive the answer to the research
question RQ6 as follows.

Ans. to RQ6: In practice, the granularity (entire func-
tion bodies or syntactic blocks) of clones does not make any
statistically significant difference in their removal.

Table 9. Removal of clone-groups at the granularities of function and block

Prog. Subject Function Clones Block Clones
Lang. System Total Removed [%] Total Removed [%]

dnsjava 69 37 53.62 25 15 60.00
Java JabRef 204 41 20.09 110 21 19.09

ArgoUML 1183 97 8.19 305 20 6.55
ZABBIX 201 78 38.80 134 62 46.26

C Conky 115 35 30.43 59 30 50.84
Claws Mail 510 40 7.84 337 29 8.60
CruiseControl 889 354 39.82 1032 355 34.40

C# iTextSharp 999 186 18.62 1687 173 10.25
ZedGraph 229 162 70.74 337 218 64.69

Table 10. Actual and normalized textual similarity of removed and alive clone-groups

Actual Textual Similarity Normalized Textual Similarity

S
D

=
S
ta

n
d
a
rd

D
ev

ia
ti

o
nProg. Subject Removed Clones Alive Clones Removed Clones Alive Clones

Lang. System Average SD Average SD Average SD Average SD
dnsjava 0.60 0.20 0.67 0.18 0.80 0.12 0.81 0.10

Java JabRef 0.76 0.18 0.68 0.18 0.85 0.13 0.82 0.11
ArgoUML 0.76 0.20 0.66 0.17 0.85 0.14 0.80 0.14
ZABBIX 0.72 0.19 0.73 0.17 0.83 0.16 0.83 0.11

C Conky 0.76 0.16 0.69 0.15 0.88 0.09 0.84 0.09
Claws Mail 0.73 0.20 0.65 0.22 0.87 0.12 0.82 0.15
CruiseControl 0.67 0.19 0.68 0.18 0.83 0.09 0.84 0.09

C# iTextSharp 0.72 0.22 0.66 0.19 0.86 0.11 0.84 0.12
ZedGraph 0.80 0.22 0.70 0.22 0.91 0.14 0.87 0.14

4.7 Textual Similarity
In Table 10, we present the average text similarities (actual
and normalized) of the removed clones and the alive clones
for each of the subject systems. Indeed, the degree of textual
similarity among the clone fragments in a clone-group is im-
portant information as it corresponds to the differences be-
tween the clone fragments. Refactoring a clone-group with
many variations can require more effort than refactoring a
group of identical or very similar clones. Thus, the textual
similarity for the clones in a clone-group can be expected
to be proportional to the necessary efforts for refactoring
them. Taking these into consideration, we address the re-
search question RQ1, and formulate our null hypothesis as
follows:

H7a
0 : Clone removal by the developers is NOT dictated by

the similarity of program text (without normalization)
in the clone fragments.

From the table, we can see that the average actual textual
similarity of removed clones for four systems (JabRef, Ar-

goUML, Conky, and Claws Mail) is higher than that of alive
clones, while the other two subject systems (dnsjava and
ZABBIX) exhibit slightly the opposite trend. A MWW test
(P = 0.041), on the data of actual textual similarity in the
alive and removed clones, rejects (as, P < α) the null hy-
pothesis H7a

0 , which indicates statistically significant rela-
tionship between the textual similarity of clones and their
removal.

Sometimes the actual textual similarity does not estimate
the actual effort for refactoring. For example, in case of dif-
ferent identifiers names in different clone fragments, textual
similarity of a clone-group may be very low although they
are easily refactorable, especially when there is refactoring
support from the IDEs (Integrated Development Environ-
ments). That is why we also investigated the normalized
textual similarity by removing the identifier differences. If
we look at the normalized text similarities of removed and
alive clones, we again see that the average normalized tex-
tual similarity for the removed clones is slightly higher than
the alive clones in those four systems. The trend is slightly
the opposite for dnsjava, while for ZABBIX, both the removed
and alive clones exhibit equal average normalized textual
similarity. With respect to the normalized text similarities
between the remove and alive clones, we formulate another
hypothesis as follows:

H7b
0 : Clone removal by the developers is NOT influenced by

the similarity of normalized program text in the clone
fragments.

A MWW test (P = 0.091) fails to reject (as, P > α) the
null hypothesis H7b

0 , suggesting that there is no statistically
significant difference in the normalized text similarities be-
tween the removed and alive clones. However, the P value in
the case of normalized textual similarity is much lower than
that of the actual textual similarity, and this hints that there
might be some influence of the differences in the names of
variables/identifiers over clone removal.

Combining the observations for the actual and normalized
text similarities over the removed and alive clones, we can
now derive the answer to the research question RQ7 as fol-
lows.

Ans. to RQ7: The textual similarity in the source code
of the clones does have statistically significant effect in the
removal of clones, and the differences in the names of the
variable/identifiers play the major role in this regard.

This finding indicates that Type-1 clones are most attrac-
tive to the developer for refactoring, and the developers, in
practice, are more inclined in refactoring Type-2 clones than
refactoring Type-3.

4.8 Age
The information about the age (in terms of the number of re-
leases the clone-groups remain alive before removal) of clone
genealogies can indicate how quickly the developers act to
remove clones. In order to examine this phenomenon, for
each of the systems, we computed the age of each clone-
group that was removed in any of the subsequent releases.

In Figure 3, we present the proportion of clone-groups found
to have been removed in a subsequent releases. As the
figures (Figure 2(a), Figure 2(b), and Figure 2(c)) show,
majority of the dead clones in five of the subject systems
(ArgoUML, JabRef, ZABBIX, Conky, and ZedGraph) were re-
moved within the initial five to ten releases. This obser-
vation is consistent with that reported by Kim et al. [15],
suggesting that many of the clones are possibly volatile.

However, in all the systems, a good number clones remained
alive over a long sequence of releases before their removal.
For example, 17% of the refactored clone-groups in ArgoUML

remained alive in 43 subsequent releases, while 35% of the
clone-groups in Claws Mail propagated over 27 subsequent
releases, before their removal. Similar trends were found in
other systems as well. From the above discussion, we answer
the research question RQ8 as follows.

Ans. to RQ8: During the evolution of the software sys-
tems, a few early releases experience significant clone re-
moval. Nevertheless, some clones propagated over a rela-
tively long sequence of releases before they were finally re-
moved.

This finding is also in keeping with the answer to the re-
search question RQ5 (Section 4.5), which indicates that
most of the clones do not undergo frequent changes before
their removal. We suspect that once a developer comes to
know of a clone during its first change, this awareness might
drive the removal of the clone at a later release. This indi-
cates an area where informed clone management can play a
significant role.

5. THREATS TO VALIDITY
In this section, we discuss possible threats to the validity of
our study and how we mitigated their effects.

Construct Validity: Perhaps the best way to investigate
change and evolution of clones is to study of the individual
clone fragments in terms of genealogies across versions of the

Systems written in Java

(Releases)

(a)

Systems written in C

(Releases)

(b)

0"

5"

10"

15"

20"

25"

30"

35"

40"

45"

50"

55"

60"

65"

70"

1" 6" 11" 16" 21" 26" 31" 36" 41" 46"5 10 15 20 25 30 35 40 45

C
lo

ne
 R

em
ov

al
 (

%
)

ZedGraph

iTextSharp

CruiseControl

Systems written in C#

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Age (Releases)

(c)

Figure 3. Clone removal over sequences of releases

system. As versions one might choose programmers’ com-
mit transactions or weekly/monthly snapshots of the code
base, or the stable releases of the system. A number of the
earlier studies [8, 15] used the programmers’ commit trans-
actions or weekly/monthly snapshots of the code base, while
many other studies [30, 31, 40] used software releases as the
versions.

Programmers often create clones for experimental purposes,
which they remove shortly after creation [15]. Thus, daily,
weekly or monthly snapshots can be too frequent to capture
stable changes in the code base. Indeed, commit transac-
tions are more susceptible to this issue, in addition to their
sensitivity to the developers’ commit styles [40]. However,
when a version of a software is officially released, the source
code is expected to be in a stable form. Moreover, even a
large number of weekly/monthly revisions may correspond
to only a few stable releases, whereas series of releases typi-
cally span a longer period of development time. Therefore,
for our study, we selected stable releases of the systems in-
stead of commit transactions or snapshots at certain time
intervals.

Internal Validity: The internal validity of our study is
subject to the accuracy in clone detection and genealogy
extraction. The NiCad clone detector used in our study, is
reported to be effective in detecting both exact (Type-1)
and near-miss (Type-2 and Type-3) clones with high preci-
sion and recall [28, 29]. Moreover, our manual verification of
random samples from the detected clones found no false pos-
itives. The genealogy extractor gCad, used in our study, is
also reported to be accurate in the computation of near-miss
clone genealogies [31]. Nevertheless, we carried out manual
investigation to verify the correctness of the genealogies and
to fix any inconsistencies. Indeed, the manual assessment
can be subject to human errors. However, all the human
participants of this study are faculty and graduate students
carrying out research in the area of software clones, and
thus we believe that they have affluent expertise to keep the
probable human errors to the minimum.

External Validity: Our study is based on nine medium to
fairly large open-source software systems, and thus one may
question the generalizability of the findings. However, for
each of the subject systems, we studied a significant number
of releases, and we expect this to help minimize the threat
to some extent. To further mitigate the threat, we care-
fully chose the subject systems from different application
domains, and written in different programming languages.

Reliability: The methodology of this study including the
procedure for data collection are documented in this pa-
per. The subject systems are open-source, while the NiCad-

2.6.3 clone detector and the gCad genealogy extractor are
also available online2. Therefore, it should be possible to
replicate the study.

6. RELATED WORK
There has been considerable research in characterizing clone
evolution and distinguishing clones of interest for removal by
refactoring.

2http://usask.ca/∼minhaz.zibran/pages/projects.html

From a manual analysis of 800 function/method level clones
over six different open-source Java systems, Balazinska et
al. [2] proposed a taxonomy of function clones, based on
the differences and similarities in the program elements. On
the basis of the location of clones in the inheritance hierar-
chy, Koni-N’Sapu [16] proposed another clone taxonomy and
a set of object-oriented refactoring patterns for refactoring
each category of code clones. Later, Kapser and Godfrey [13]
proposed a clone taxonomy based on the locations of clones
in the file-system hierarchy and (dis)similarities in the code
functionalities.

Schulze et al. [33] proposed a code clone classification scheme
to support the decision of whether to use Object-Oriented
Refactoring (OOR) or Aspect Oriented Refactoring (AOR)
for clone removal. Other techniques, such as design pat-
terns [1] and traits [22] were also attempted to identify and
refactor clones of interest. Torres [37] applied a concept-
lattice based data mining approach to derive four categories
of concepts containing duplicated code and suggested refac-
toring patterns suitable for refactoring clones in each of the
categories.

Higo et al. [10] proposed a software-metrics-based approach
to identify potential clones that can be easier to refactor us-
ing the extract method and pull-up method refactoring pat-
terns. Variations of such metrics-based approaches are re-
alized in tools namely Gemini [38] and ARIES [10]. Choi et
al. [4] carried out a developer-centric study to determine the
effectiveness of different combinations of metrics in distin-
guishing clones of interest for refactoring.

None of the aforementioned work was based on code clone
genealogies as ours, where we examined the evolution of
individual clone fragments to characterize the patterns of
change and removal of clones. Based on the experience
from an ethnographic study on copy and paste programming
practices, Kim et al. [14] reported that “larger or frequently
copied code fragments are good candidates for refactoring.”
The findings of our study also to support their conjecture.

Based on a case study on two open source Java systems,
Tairas and Gray [35] reported that in some cases clone refac-
torings were partially performed on only parts of the clones
(i.e., sub-clones). However, their focus was only on the oc-
currences of refactorings composed of the extract method
refactoring pattern. The objective of our work was to in-
vestigate and characterize removal and refactoring of clones
not only through the extract method refactoring patterns,
but also by all other possible means.

Göde [8] conducted a case study over four systems, and in-
vestigated the extent clones were removed from the systems.
He found many instances of deliberate clone removal, and
the majority of those removals were performed by the ex-
tract method refactoring pattern. He further reported that
the developers refactored mostly the closely located clones,
which is also consistent with our findings.

The study of Göde was based on only three metrics, and
he concluded that more complex metrics such as change fre-
quency of clones should be examined to better understand
the phenomenon. In our study, based on clone genealogies
over 329 releases of nine software systems and using a wide

range of characterization criteria, we captured a broader pic-
ture of clone removal and changes in open-source software
systems.

7. CONCLUSION
This paper presents a genealogy-based empirical study on
the evolution of individual clone fragments to characterize
the changes and removal of exact (Type-1) and near-miss
(Type-2 and Type3) code clones. We examined a total of
329 releases from nine open-source software systems written
in Java, C, and C#.

In the study, we addressed eight research questions, and
derived answers to those with a combination of qualitative
and quantitative analyses as well as statistical tests of signif-
icance. The findings of our study shed light on the conven-
tional wisdom about clone evolution, in particular, derive
useful insights into the patterns of changes and removals of
code clones in practice.

From the study, we found that the sizes of the clone-groups
(in terms of the number of member clone fragments), or the
granularity (i.e., functions or blocks) of clones, or their dis-
persion in the file-system hierarchy do not have any signifi-
cant effect on clone removal in practice. In terms of change
patterns, we did not find any relationships between clone
removal and any particular type of changes (i.e., consistent
or inconsistent).

However, highly similar or larger clone fragments appear to
be attractive for removal. A few early releases of the software
systems experienced significantly more changes and removal
of clones than the later releases. Inconsistent changes are
found to have dominated over consistent changes of code
clones. We also found that the majority of clones that
were removed, did not experience frequent changes before
removal, and surprisingly, most of those clones underwent
changes only once, before they were removed from their re-
spective systems.

During manual investigation, we discovered many instances
of clones, which could be attractive for refactoring, but those
were left alone, perhaps due to the lack of proper tool sup-
port. We believe that the practical findings from this study
make significant contributions to the existing wisdom about
clone evolution, refactoring, and removal, which in turn, will
be useful for devising effective tools and techniques for in-
formed clone management.

Acknowledgement: This work is supported in part by the
Walter C. Sumner Memorial Foundation.

8. REFERENCES
[1] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and

K. Kontogiannis. Advanced clone-analysis to support
object-oriented system refactoring. In Proc. of the 7th
Working Conference on Reverse Engineering, pp.
98–107, 2000.

[2] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis. Measuring clone based reengineering
opportunities. In Proc. of the 6th International
Symposium on Software Metrics, pp. 292–303, 1999.

[3] D. Cai and M. Kim. An empirical study of long-lived
code clones. In Proc. of the International Conference
on Fundamental Approaches to Software Engineering,
pp. 432–446, 2011.

[4] E. Choi, N. Yoshida, T. Ishio, K. Inoue, and T. Sano.
Extracting code clones for refactoring using
combinations of clone metrics. In Proc. of the 5th
International Workshop on Software Clones, pp. 7–13,
2011.

[5] J. Cordy and C. Roy. The NiCad clone detector. In
Proc. of the Tool Demo Track of the 19th
International Conference on Program Comprehension,
pp. 219–220, 2011.

[6] J. Cordy and C. Roy. Tuning research tools for
scalability and performance: the NiCad experience. In
Science of Computer Programming, 79(1):158–171,
2014.

[7] N. Göde and R. Koschke. Frequency and risks of
changes to clones. In Proc. of the 33rd International
Conference on Software Engineering, pp. 311–320,
2011.

[8] N. Göde. Clone removal: fact or fiction? In Proc. of
the 4th International Workshop on Software Clones,
pp. 33–40, 2010.

[9] N. Göde and J. Harder. Clone stability. In Proc. of the
15th European Conference on Software Maintenance
and Reengineering, pp. 65–74, 2011.

[10] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue.
Aries: Refactoring support environment based on code
clone analysis. In Proc. of the 8th IASTED
International Conference on Software Engineering and
Applications, pp. 222–229, 2004.

[11] E. Juergens, F. Deissenboeck, B. Hummel, and
S. Wagner. Do code clones matter? In Proc. of the
31st International Conference of Software
Engineering, pp. 485–495, 2009.

[12] C. Kapser and M. Godfrey, “Cloning considered
harmful” considered harmful: patterns of cloning in
software entities, In Journal of Empirical Software
Engineering, 13(6):645–692, 2004.

[13] C. Kapser and M. Godfrey. Aiding comprehension of
cloning through categorization. In Proc. of the 7th
International Workshop on Principles of Software
Evolution, pp. 85–94, 2004.

[14] M. Kim, L. Bergman, T. Lau, and D. Notkin. An
ethnographic study of copy and paste programming
practices in OOPL. In Proc. of the International
Symposium on Empirical Software Engineering, pp.
83–92, 2004.

[15] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An
empirical study of code clone genealogies. In Proc. of
the Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software
Engineering, pp. 187–196, 2005.

[16] G. Koni-N’Sapu. A scenario based approach for
refactoring duplicated code in OO systems. Diploma
thesis, University of Bern, 116 pp., 2001.

[17] J. Krinke. Is cloned code more stable than non-cloned
code? In Proc. of the 8th International Conference on
Source Code Analysis and Manipulation, pp. 57–66,
2008.

[18] A. Lozano and M. Wermelinger. Tracking clones’
imprint. In Proc. of the 4th International Workshop
on Software Clones, pp. 65–72, 2010.

[19] D. Anderson, D. Sweeney, and T. Williams. Statistics
for Business and Economics. Thomson Higher
Education,10th Edition, 2009.

[20] M. Mondal, C. Roy, M. Rahman, R. Saha, J. Krinke,
and K. Schneider. Comparative stability of cloned and
non-cloned code: An empirical study. In Proc. of the
27th ACM Symposium On Applied Computing (SE
Track), pp., 1227–1234, 2012.

[21] M. Mondal, C. Roy, and K. Schneider. An empirical
study on clone stability. In Applied Computing Review,
12(3):20–36, 2013.

[22] E. Murphy-Hill, P. Quitslund, and A. Black.
Removing duplication from java.io: a case study using
traits. In Proc. of the ACM SIGPLAN conference on
Systems, Programming, Languages and Applications,
pp. 282–291, 2005.

[23] H. Nguyen, T. Nguyen, N. Pham, J. Al-Kofahi, and
T. Nguyen. Clone management for evolving software.
In IEEE Transaction on Software Engineering,
38(5):1008–1026, 2011.

[24] J. Pate, R. Tairas, and N. Kraft. Clone evolution: a
systematic review. In Journal of Software: Evolution
and Process , 25(3): 261–283, 2013.

[25] F. Rahman, C. Bird, and P. Devanbu. Clones: what is
that smell? In Proc. of the 7th Working Conference on
Mining Software Repository, pp. 72–81, 2010.

[26] M. Rieger, S. Ducasse, and M. Lanza. Insights into
system-wide code duplication. In Proc. of the 11th
Working Conference on Reverse Engineering, pp.
100–109, 2004.

[27] C. Roy and J. Cordy. A survey on software clone
detection research, Technical Report 2007-541, School
of Computing, Queen’s University, 115 pp., 2007.

[28] C. Roy and J. Cordy. A mutation/ injection-based
automatic framework for evaluating code clone
detection tools. In Proc. of Mutation, pp. 157–166,
2009.

[29] C. Roy and J. Cordy. NiCad: Accurate Detection of
Near-Miss Intentional clones using flexible
pretty-printing and code Normalization. In Proc. of
the 16th International Conference on Program
Comprehension, pp. 172–181, 2008.

[30] R. Saha, M. Asaduzzaman, M. Zibran, C. Roy, and
K. Schneider. Evaluating code clone genealogies at
release level: an empirical study. In Proc. of the 10th
International Conference on Source Code Analysis and
Manipulation, pp. 87–96, 2010.

[31] R. Saha, C. Roy, and K. Schneider. An automatic
framework for extracting and classifying near-miss
clone genealogies. In Proc. of the International
Conference on Software Maintenace, pp. 293–302,
2011.

[32] R. Saha, C. Roy, K. Schneider, and D. Perry.
Understanding the evolution of Type-3 clones: an
exploratory study. In Proc. of the 10th Working
Conference on Mining Software Repositories, pp.
139–148, 2013.

[33] S. Schulze, M. Kuhlemann, and M. Rosenmüller.
Towards a refactoring guideline using code clone

classification. In Proc. of the 1st Workshop on
Refactoring Tools, pp. 6:1–6:4, 2008.

[34] J. Svajlenko, C. Roy, and J. Cordy. A mutation
analysis based benchmarking framework for clone
detectors. In Proc. of the Tool Demonstration Track of
the 7th International Workshop on Software Clones,
pp. 8–9, 2013.

[35] R. Tairas and J. Gray. Sub-clones: Considering the
part rather than the whole. In Proc. of the 9th
International Conference on Software Engineering
Research and Practice, pp. 284–290, 2010.

[36] S. Thummalapenta, L. Cerulo, L. Aversano, and
M. D. Penta. An empirical study on the maintenance
of source code clones. In Journal of Empirical
Software Engineering, 15(1):1–34, 2009.

[37] R. Torres. Source code mining for code duplication
refactorings with formal concept analysis. M.Sc.
thesis, Vrije Universiteit Brussel, 53 pp., 2004.

[38] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue.
Gemini: Maintenance support environment based on
code clone analysis. In Proc. of the 9th International
Symposium on Software Metrics, pp. 67–76, 2002.

[39] R. Venkatasubramanyam, S. Gupta, and H. Singh.
Prioritizing Code Clone detection results for clone
management. In Proc. of the 7th International
Workshop on Software Clones, pp. 30–36, 2013.

[40] M. Zibran, R. Saha, M. Asaduzzaman, and C. Roy.
Analyzing and forecasting near-miss clones in evolving
software: an empirical study. In Proc. of the 16th
International Conference on Engineering of Complex
Computer System, pp. 295–304, 2011.

[41] M. Zibran and C. Roy. A constraint programming
approach to conflict-aware optimal scheduling of
prioritized code clone refactoring. In Proc. of the 11th
International Conference on Source Code Analysis and
Manipulation, pp. 105–114, 2011.

[42] M. Zibran and C. Roy. Conflict-aware Optimal
Scheduling of Code Clone Refactoring: A Constraint
Programming Approach. In Proc. of the 19th
International Conference on Program Comprehension,
pp. 266–269, 2011.

[43] M. Zibran and C. Roy. Conflict-aware optimal
scheduling of code clone refactoring. In IET Software,
7(3):167–186, 2013.

[44] M. Zibran and C. Roy. Towards flexible code clone
detection, management, and refactoring in IDE. In
Proc. of 5th the International Workshop on Software
Clones, pp. 75–76, 2011.

[45] M. Zibran and C. Roy. IDE-based real-time focused
search for near-miss clones. In Proc. of the 27th ACM
Symposium On Applied Computing (SE Track), pp.
1235–1242, 2012.

[46] M. Zibran, R. Saha, C. Roy, and K. Schneider.
Evaluating the conventional wisdom in clone removal:
A genealogy-based empirical study. In Proc. of the
28th ACM Symposium On Applied Computing (SE
Track), pp. 1123–1130, 2013.

[47] M. Zibran and C. Roy. The road to software clone
management: A survey. Tech. Report 2012-03,
Department of Computer Science, University of
Saskatchewan, Canada, pp. 1–62, 2012.

ABOUT THE AUTHORS:

Minhaz F. Zibran is a Ph.D. candidate at the Department of Computer Science,
University of Saskatchewan, Canada. His research interests include various aspects
of software engineering with particular focus on the detection, analysis, and
management of code clones in evolving software systems. Minhaz has co-authored
scholarly articles published in ACM and IEEE sponsored international conferences
and reputed journals. Throughout his career, Minhaz also earned both teaching and
industry experience. He has been actively involved in organizing international
conferences (e.g., ICPC'2011, SCAM'2012, ICPC'2012, WCRE'2012, ICSM'2013)
in his area of research. His scholarly excellence enabled him earning many
scholarships and awards including the postgraduate scholarship from the Natural
Science and Engineering Research Council (NSERC) of Canada.

Ripon K. Saha is a Ph.D. student in the Department of Electrical and Computer
Engineering at The University of Texas at Austin. He received his B.Sc. degree in
Computer Science and Engineering from Khulna University, Bangladesh and M.Sc.
degree in computer science from University of Saskatchewan, Canada. His research
interests include program analysis, mining software repositories, and empirical
software engineering.

Chanchal Roy is an assistant professor of Software Engineering/Computer Science
at the University of Saskatchewan, Canada. While he has been working on a broad
range of topics in Computer Science, his chief research interest is Software
Engineering. In particular, he is interested in software maintenance and evolution,
including clone detection, analysis and management, reverse engineering, empirical
software engineering, and mining software repositories. He served or has been
serving in the program committee of major software engineering conferences (e.g.,
ICSM, WCRE, MSR, ICPC and SCAM). He served as the Finance Chair for
ICPC’11, Tool Co-chairs for ICSM’12 and WCRE’12, Tool Chair for SCAM’12,
Poster Co-chair for ICPC’12, Program Co-chair for IWSC’12, and Finance Chair for
ICSM’13. He has been working as the General Chair for ICPC’14.

Dr. Kevin Schneider is a Professor of Computer Science, Special Advisor ICT
Research and Director of the Software Research Lab at the University of
Saskatchewan. Dr. Schneider has held appointments as Computer Science
Department Head, Vice-Dean Science, and Acting Chief Information Officer and
Associate Vice-President Information and Communications Technology. Before
joining the University in 2001, Dr. Schneider was CEO and President of Legasys
Corp., a software research and development company specializing in design
recovery and automated software engineering. His research investigates models,
notations and techniques that are designed to assist software project teams develop
and evolve large, interactive and usable systems. Dr. Schneider is a member of the
ACM and IEEE CS, an elected member of the International Federation for
Information Processing working group 2.7/13.4 on user interface engineering and
past Prairie representative for the Canadian Association of Computer Science.

A Boosted SVM based Ensemble Classifier for Sentiment
Analysis of Online Reviews

Anuj Sharma
Chandragupt Institute of Management

Hindi Bhavan,
Patna – 800001, India

f09anujs@iimidr.ac.in

Shubhamoy Dey
Indian Institute of Management

Prabandh Shikhar, Rau,
Indore – 453331, India

shubhamoy@iimidr.ac.in

ABSTRACT
In recent years, several approaches have been proposed for
sentiment based classification of online text. Out of the different
contemporary approaches, supervised machine learning
techniques like Naive Bayes (NB) and Support Vector Machines
(SVM) are found to be very effective, as reported in literature.
However, some studies have reported that the conditional
independence assumption of NB makes feature selection a crucial
problem. Moreover, SVM also suffers from other issues like
selection of kernel functions, skewed vector spaces and
heterogeneity in the training examples. In this paper, we propose a
hybrid method by integrating “weak” support vector machine
classifiers using boosting techniques. The proposed model
exploits classification performance of Boosting while using SVM
as the base classifier, applied for sentiment based classification of
online reviews. The results on movies and hotel review corpora of
2000 reviews have shown that the proposed approach has
succeeded in improving the performance of SVM. The resultant
ensemble classifier has performed better than the single base
SVM classifier, and the results confirm that ensemble SVM with
boosting, significantly outperforms single SVM in terms of
accuracy. 1

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—classifier
design and evaluation, feature evaluation and selection; I.5.1
[Pattern Recognition]: Models—SVM; I.2.7 [Natural Language
Processing] – Text analysis

General Terms
Performance, Design, Experimentation, Theory

Keywords
SVM, Sentiment Analysis, Classification, Sentiment Lexicon,
Text Mining

1. INTRODUCTION
Sentiment analysis and opinion mining of online user generated
text content has already proved to be a promising research domain

1 Copyright is held by the authors. This work is based on an
earlier work: RACS'13 Proceedings of the 2013 ACM Research in
Adaptive and Convergent Systems, Copyright 2013 ACM 978-1-
4503-2348-2/13/10.
http://doi.acm.org/10.1145/2513328.2513311.

with growing popularity of Web 2.0 social media [12, 15].
Consumers and users have enthusiastically raised their voices and
expressed their sentiments in the form of textual posts on social
media for virtually anything they care about. Web 2.0 based
mediums like message forums, blogs and review sites have
emerged as good sources of expressed opinion and sentiments on
a large scale [23].

The large scale opinionated text available on the Internet and Web
2.0 social media has created ample research opportunities for
business and academia. Different research works have associated
opinion expressed in online reviews to product sales [42], opinion
in online discussion to prediction of best travel destinations [41],
and public sentiments in political debates to results of general
elections [35], the list is limitless. In case of online reviews,
researchers have concluded that web based opinion are a good
proxy for word-of-mouth [5, 23].

With the rapid growth of the social media, more and more users
post reviews for all types of products and services and place them
on online forums. It is becoming a common practice for a
potential consumer to learn how much others like or dislike a
product before arriving at a purchase decision. By processing the
reviews, product manufacturers and marketing professionals can
keep track of customer opinions of their products, with the aim of
improving the user satisfaction. However, as the number of
reviews available for any given product grows, it becomes a more
time consuming task for buyers to understand and evaluate what
the prevailing opinion trend about the product is. So, from the
point of view of users, to read these millions of reviews from
different Web 2.0 based sources is nearly impossible. Moreover, it
is also an expensive process for the companies to track the
opinion about their products or services in the large volume of
online reviews.

The large volume of opinionated data poses severe data
processing and sentiment extraction related challenges. Different
contemporary solutions based on different machine learning,
dictionary, statistical, and semantic based approaches have been
proposed for sentiment analysis of online textual data [6, 23, 37].
Existing machine learning approaches have given promising
results [16, 30]. Therefore, it is important to enhance these
existing techniques that can extract knowledge from voluminous
subjective or opinionated texts.

Though the other approaches like dictionary and semantic
orientation based approaches perform quicker than machine
learning based approaches and have no requirement of pre-
annotated text, studies have reported poor results, in terms of
accuracy, in real-life applications. The maintenance of sentiment

dictionaries for different domains is also a critically important
task related to lexicon based methods [20]. The statistical
approach aims to exploit statistics based on co-occurrence of
words to derive sentiment polarity of features, which in turn, is
found to be a very inefficient way to analyze sentiment of text in
terms of time complexity [31, 38].

This paper proposes a hybrid sentiment classification model based
on Boosted SVM. The proposed model exploits classification
performance of two techniques (boosting and SVM) applied for
the task of sentiment based classification of online reviews. SVM
has been found to be one of best machine learning classifiers in
recent studies [31, 34]. Literature reports that the learning phase
of SVM is very time consuming for large textual data and some
approximate algorithms can reduce the learning time of SVM
[30]. Although, the approximate algorithms can reduce the
computation time, they significantly degrade the classification
accuracy.

To address the above issues, this study proposes to use Boosting
techniques for the SVM ensemble. The Boosted SVM ensemble is
experimented for sentiment classification of online reviews. Our
working hypothesis is that Boosting can improve classification
accuracy compared to a single SVM.

Boosting algorithms like Adaboost can find a good final
hypothesis combining multiple appropriate hypotheses produced
by weak (or base) classifier(s) [10]. Roughly, we denote a weak
classifier as a classifier that returns a hypothesis that outperforms
just simple random guessing. Using a classifier like SVM as the
base weak learner, this study has shown that a weakened version
of SVM can be useful as a base weak classifier suitable for
boosting. Previous studies have also supported the view that the
size of the weights assigned by Adaboost to the weak SVMs,
serve as an indication of which data points are likely to become
support vectors in the final model, and hence can be useful for
constructing a strong classifier.

The results of our experiments on movie reviews and a hotel
reviews corpora of 2000 reviews have shown that the proposed
approach has succeeded in improving performance of SVM when
used as a weak learner for sentiment based classification. The
results show that SVM ensemble with bagging or boosting
outperforms a single SVM in terms of accuracy of sentiment
classification. The rest of this paper is organized as follows:
Section 2 presents related work on sentiment analysis. The
proposed methodology is described in Section 3. Experimental
results are given in Section 4. Finally, Section 5 concludes the
paper.

2. RELATED WORK
The last few years have witnessed significant developments in
research related to opinion mining and sentiment analysis.
Majority of the works reported are related to lexicon and
supervised machine learning based techniques. The details of
work apart from machine learning approaches are out of scope of
this study and can be found in recent surveys [23, 37].

Table 1 summarizes some of the studies related to sentiment based
classification of text documents using SVM and other machine
learning classifiers. The basic machine learning approach for
sentiment based classification of opinionated text aims at finding
patterns from pre-annotated text documents during learning and

uses n-fold cross validation for assessment of the accuracy of the
built model. The build model is then used to classify the test
and/or validation corpuses.

Table 1. Studies Related to SVM for Sentiment Analysis

Author Model Data Source and
Dataset

Accuracy
(%)

Pang et al.
(2002) [25]

NB, ME,
SVM

Movie reviews (IMDb)- 700
(+) and 700 (-) reviews 77–82.9

Dave et al.
(2003) [8]

NB, ME,
SVM Product reviews (Amazon) 88.9

Pang & Lee
(2004) [22] NB, SVM

Movie reviews (IMDb)-
1000 (+) and 1000 (-)

reviews
86.4-87.2

Gamon
(2004) [11] SVM Customer reviews

(feedback) 69.5- 77.5

Pang & Lee
(2005) [24]

SVM, SVR,
Regression,

Metric
Labeling

Movie reviews (IMDb)-
5006 reviews 54.6- 66.3

Chen et al.
(2006) [4]

Decision
Trees C4.5,
SVM, NB

Books Reviews (Amazon)-
3,168 reviews 84.59

Boiy et al.
(2007) [2]

SVM,
Multinomial

NB, ME

Movie reviews (IMDb)-
1000 (+) and 1000 (-)

reviews, Car reviews- 550
(+) and 222 (-) reviews

90.25

Annett &
Kondrak

(2008) [1]

SVM, NB,
Decision Tree

Movie reviews (IMDb)-
1000 (+) and 1000 (-)

reviews

Greater
than 75%

Shimada
& Endo

(2008) [33]

SVR, SVM
OVA, ME

Product Reviews (video
games)

NA

Dasgupta &
Ng (2009) [7]

SVM and
Clustering

based

Movie reviews (IMDb) and
product reviews (Amazon)-

1000 (+) and 1000 (-)
reviews

69.5- 93.7

Ye et al.
(2009) [41]

NB, SVM and
Character

based N-gram
model

Travel blogs from
travel.yahoo.com- 591 (-)

and 600 (+) reviews

80.71-
85.14

Paltoglou &
Thelwall

(2010) [21]
SVM

Movie Reviews (IMDb)-
1000 (+) and 1000 (-)

reviews, Multi-Domain
Sentiment Dataset (MDSD)-

8000 reviews

MR- 96.90,
MDSD-
96.40

Xia et. al.
(2011) [40]

NB, ME,
SVM, meta-

classifier
combination

Movie Reviews (IMDB),
product reviews (Amazon)-

1000 (+) and 1000 (-)
reviews

88.65

Sharma &
Dey (2012a)

[31]

SVM, Feature
Selection

Techniques
Movie Reviews (IMDb) 90.1

Sharma &
Dey (2012b)

[30]

SVM & 6
other

classifiers
Movie Reviews (IMDb) 90.9

Sharma &
Dey (2012c)

[32]
ANN Movie and Hotel Reviews 95

Machine learning techniques became popular for sentiment
analysis following the seminal studies by Pang et al. [25] and
Pang and Lee [22, 24]. Different supervised machine learning
classifiers like Naive Bayes, maximum entropy and support vector
machines were compared and SVM showed the best performance
on the movie reviews corpus with average precision of around

80% [25]. Many other works experimented with different machine
learning classifiers with different types of features like single
words, character N-grams, and word N-grams, like bigrams and
trigrams. Feature selection methods like information gain, gain
ratio, CHI statistics, Relief-F etc. were also used with different
machine learning techniques for sentiment based classification
[31].

From review of literature it can be concluded that support vector
machine has performed better in term of accuracy than other
machine learning based methods of sentiment analysis. The
original SVM algorithm for sentiment based classification is
implemented using the approximation based optimization
algorithms which perform structural risk minimization in order to
reduce the computation complexity of time and space.

Literature also suggests that a single SVM may not be able to
learn the exact parameters for globally optimum results. The
support vectors obtained from the learning data (pre-annotated as
per sentiment orientation) are not sufficient to classify all
unknown test/validation instances of opinionated documents
completely. So, it cannot be guaranteed that SVM always
provides the globally optimum sentiment based classification
performance over all test cases (including all n-folds, in case of n-
fold cross-validation). To overcome this drawback, this study
proposes a novel boosted SVM approach for sentiment analysis.

3. METHODOLOGY
First, the opinionated text documents were collected and then,
pre-processed. The vector space model (VSM) was utilized in
order to generate the bag of words representation for each
document. The text documents were pre-processed with basic
natural language processing techniques like word tokenization,
stop word removal and stemming. In this study, we have used
Snowball stemmer algorithm for the English language [27]. Some
useful sentiment expressing terms such as “ok” and “not” were
consciously preserved as these words carry sentiment bearing
subjective expression by online users.

The residual tokens were arranged as per their frequencies or
occurrences in whole documents set. Following that, we used
information gain feature selection method to pick out top n-ranked
discriminating attributes to train the classifiers, as information
gain has been reported to be one of the most effective feature
selection methods for sentiment based classification of
opinionated text [30]. The number of selected features (n) was
varied from very small to very large (50-10000) for our
experiments.

3.1 Support Vector Machine (SVM)
Support vector machines (SVMs) are highly effective for
traditional text categorization, and can outperform Naive Bayes
[22]. The SVM has been known to show a good generalization
performance and can easily learn the exact parameters for the
global optimum. SVM seeks a hyper-plane represented by vectors
that splits the positive and negative training vectors of documents
with maximum margin. The problem of finding this hyperplane
can be translated into a constrained optimization problem. SVM
algorithm classifies opinionated text vectors by separating it into
positive and negative classes with a hyperplane, which can be
further extended to non-linear decision boundaries using various
kernels [14].

The structural risk minimization principle is utilized from the
computational learning theory. The idea of structural risk
minimization is to find a hypothesis h for which we can guarantee
the lowest true error. In the presence of noise and outliers, the idea
of using a soft margin was suggested in literature [39]. SVM seeks
a decision surface to separate the training data points into two
classes and makes decisions based on the support vectors that are
selected as the only effective elements in the training set.
Effectively, training a SVM classifier requires the solution of a
very large quadratic programming optimization problem.

This study has used a variant of SVM for fast training using
Sequential Minimal Optimization (SMO) [26]. SMO breaks this
large quadratic programming problem into a series of smallest
possible quadratic problems avoiding complex and resource-
hungry matrix computations. The best case space complexity for
SMO is a linear function of the training set size, which enables
SMO to handle very large training sets. SMO's computation time
is dominated by SVM evaluation; hence SMO is fastest for linear
SVMs and sparse data sets.

The optimization of SVM (dual form) is to minimize the SVM
Lagrangian equation expressed as:

(1)

Subject to: i
1

0; 0 C
n

i i
i

yα α
=

= ≤ ≤∑ (2)

Where xi’s are the input pattern and αi’s are Lagrange multipliers.
Depending on the choice of kernel functions, different classifiers
including linear and nonlinear classifiers can be constructed.

The classification result of a practically implemented SVM is
often far from the theoretically expected level because their
implementations are based on the approximated algorithms due to
the high complexity of time and space. A complete description of
the SVM classifier and the kernel functions used for sentiment
analysis is outside the scope of this study and can be found in [25,
28].

3.2 Boosting Algorithms
Boosting is a generic approach for improving performance of any
given classifier [3]. It can effectively ensemble a number of weak
classifiers into a strong pattern learner which can achieve an
arbitrarily high accuracy given sufficient training data, although
each weak classifier might do just a little better than random
guessing. Some popular methods for selecting the representative
training samples from a collection of datasets are bagging,
boosting, randomization, stacking and dagging [10].

This study focuses on bagging and boosting. These algorithms are
used as voting methods, which formulate a single strong classifier
from a linear combination of a number of weak classifiers. In the
domain of topic based text classification, some boosting
algorithms have shown significantly better results. Bootstrapping
techniques are used for assessing statistical accuracy of some
estimate. Boosting approach can be assumed as a sample based
statistical method which consists of drawing random samples
with/without replacement from the set of data points.

1 1 1

arg min ,
n n n

i i j i j i j
i i j

y y x xα α α α
∗

= = =

= − +
 
 
 
∑ ∑∑

  

3.2.1 Bagging
This research proposes to use bagging technique to construct the
SVM ensemble. In bagging, several SVMs are trained
independently via a bootstrap method and then they are
aggregated to formulate a strong classifier via an appropriate
combination technique. Let us consider a single training set TR =
{(xi, yi)| i = 1, 2,…, n}. To construct the SVM ensemble with K
independent SVMs, K training sample sets will be needed. Also,
in order to obtain higher improvement of the aggregation result,
the training sample sets should be different from each other, as far
as possible. For performing the aggregation, bootstrap techniques
have been suggested [3].

The main idea of this algorithm is to fit a regression model which
will develop a prediction fx at input xi. Bootstrapping builds K
replica training data sets {TR-bootstrapk | k = 1, 2,…, K} by
randomly re-sampling with replacement, from the given training
data set TR repeatedly. Each example xi in the given training set
TR may appear more than once or not at all in any particular
replica training data set. Each replica training set will be used to
train a particular SVM. By averaging classification prediction
over the collection of bootstraps, bagging may significantly
reduce variance and increase accuracy. The bagging algorithm is
summarized as follows:

Input: training set TR = {(xi, yi)| i = 1, 2,…, n} where xi is the
document vector with class yi.
Output: An ensemble classifier for the training set TR-bootstrapk.
For K iterations-

1. Draw with replacement K≤ n sample from the training
set TR, obtaining the jth sample TRj to train the jth SVM.

2. Train the jth SVM for each K replicated training data
sets TR-bootstrapk.

3. Build the final ensemble classifier as a majority based
vote of SVMj (j=1, …, K). The voting is simplifies as
where θ is the voting parameter:

finalSVM =sign
k

j j
j i

SVMθ
=

 
 
 
∑

 (3)
3.2.2 Boosting
Boosting is a sampling technique which is similar to
bootstrapping and bagging approaches. The difference among
them lies in the way the training set is prepared by taking samples
from the population [10]. The bootstrapping and bagging
techniques performs sampling with replacement but boosting
performs sampling without replacement. Like bagging, each
SVM is also trained using a different training set. But, the
selection scheme of training samples in boosting method is
different from the bagging method [9].

Initially, we have a training set TR = {(xi, yi)| i = 1, 2,…, n},
consisting of all the n samples and each sample in the TR is
assigned to have the same value of weights w(xi)=1/n. For training
the Kth SVM classifier, we build a set of training samples TR-
boostk ={(xi, yi)| i = 1, 2,…, k}, that is obtained by selecting K<n
samples from the whole data set TR according to the weight
values wk-1(xi) at the (k-1)th iteration. This training sample is used
for training the Kth SVM classifier. Then, we evaluate the
classification performance of the Kth trained SVM classifier using
the whole training set TR. This sampling procedure is repeated

until K training sample sets have been built for the Kth SVM
classifier. The boosting algorithm is summarized as follows:

Input: training set TR = {(xi, yi)| i = 1, 2,…, n}, K=number of
samples in the training set.
Output: An ensemble classifier for the training set TR-boostk.
For K iterations do repeat step 1 to 3-

1. Draw without replacement K≤ n sample from the
training set TR, obtaining the jth sample TRj to train the
jth SVM.

2. Train the jth SVM for each K replicated training data
sets TR-bootstrapk.

3. Select some of the misclassified samples by jth SVM
with another drawn sample without replacement from
TR to train jth+1 SVM.

4. Build the final ensemble classifier as a majority based
vote of SVMj (j=1, …, K). The voting is as per Eq. 3.

3.2.3 Adaptive Boosting (AdaBoost)
One of the most popular Boosting methods, AdaBoost [10] creates
a collection of weak learners by computing a set of weights over
training samples in each iteration instead of performing random
sampling. AdaBoost adjusts these weights based on the combined
classifier that is formulated from combination of weak classifiers.
The weights of the misclassified samples by the current classifier
are increased while those of the correctly classified are be
decreased.

Thus, AdaBoost establishes a collection of weak base classifiers
by maintaining a set of weights over training samples and then,
adjusting them adaptively after each Boosting iteration. Hence,
the weights of the misclassified samples by current weak classifier
will be increased while the weights of the correctly classified
samples will be decreased. To implement the weight updates in
Adaboost, several approaches have been proposed. The
performance of AdaBoost can be attributed to its ability to enlarge
the margin, which could enhance AdaBoost’s generalization
capability.

The effectiveness of the AdaBoost (like boosting algorithms) in
improving generalization performance is based on the notion of a
margin that can be interpreted as a measure of confidence in the
prediction. Many studies that use decision trees or neural
networks as weak learners for AdaBoost have reported good
generalization performance. The AdaBoost algorithm is
summarized as follows:

Input: training set TR = {(xi, yi)| i = 1, 2,…, n}, K=number of
samples
Output: An ensemble classifier for the training set TR-AdaBoostk.
Initialize the weights wi=1/n for i= 1, 2,…, n.

For K iterations-

1. Train the base SVMj on the weighted training data using
the weights wi

2. Calculate error term for the wrong classification:

()
1

()
i i

n

t t y SVM x
i

D i Iε ≠
=

=∑
 (4)

3. compute the optimal weights update step to calculate
weight contribution as:

() arg maxmv j
j

Q x N=

10.5ln t
t

t

εα
ε

 −
=  

  (5)
4. Update the sample distribution as:

(6)

where Zt is a normalization factor to ensure:

1
1

() 1
n

t
i

D i+
=

=∑

5. The final composite classifier is given by-

finalSVM =sign
k

j j
j i

SVMθ
=

 
 
 
∑

 (7)

3.3 Boosting for Constructing SVM Ensemble
The key idea is integrating SVM with Boosting to enhance the
generalization ability of a strong classifier by automatically
selecting the best features for the base learners at each boosting
step. While SVMs explicitly maximize the minimum margin,
boosting tends to do the same indirectly through minimizing a
cost function related to margin.

The need of creating an ensemble SVM is justified since the
practical SVM has been implemented using approximated
algorithms in order to reduce the computation complexity of time
and space. For this reason, a single SVM may not learn exact
parameters to reach at the global optimum solution. Sometimes,
the support vectors obtained from the learning is not sufficient to
classify all unknown test examples completely. So, we cannot
guarantee that a single SVM always provides the global optimal
classification performance over all test examples.

The idea of Boosted SVM has been proposed in this study for
sentiment based classification for online text. This study assumes
that the boosting technique can be used to train each individual
SVM and thus several SVMs can be combined. This study
proposes to use the SVM ensemble based on bagging and
boosting techniques. In bootstrapping (bagging), each individual
SVM is trained over the randomly chosen training samples via a
bootstrap technique. In boosting, the training samples for each
individual SVM is chosen according to updating probability
distribution (related to error) for samples. Then, the independently
trained SVMs can be aggregated in various ways such as the
majority voting, least-squares estimation (LSE)-based weighting,
and double-layer hierarchical combining.

3.3.1 Aggregation Strategies for SVM Ensemble
Literature has reported several linear and nonlinear combination
methods to aggregate several independently trained SVMs.
Majority voting and the LSE-based weighting are two popular
linear combination methods proposed by different studies [18]. In
a nonlinear method, another upper-layer SVM is applied to
combine several lower-layer SVMs so as to create a nonlinear
combination of several SVMs. This method is known as the
double-layer hierarchical combining. This study has used majority
voting as an aggregation strategy as it is the simplest method for
combining several SVMs.

Let Qp (p=1, 2, …, P) be a decision function of the pth SVM in the
SVM ensemble and Cj (j=1,2, …, C) denote a label of the jth class.

Then, let Nj= #{p| Qp (x)=Cj}, which represents the number of
SVMs whose decisions are known to the jth class. Then, the final
decision of the SVM ensemble Qmv(x) for a given test vector x due
to the majority voting is determined by:

 (8)

The other methods for combining several SVMs can be LSE-
based weighting and double-layer hierarchical combining. The
LSE-based weighting treats several SVMs in the SVM ensemble
with different weights [17]. Often, the weights of several SVMs
are determined in proportional to their accuracies of
classifications. As reported in some studies, LSE-based weighting
cannot be applied to large size training set due to space and time
complexity issues [19]. The hierarchical combining aggregation
method uses another SVM to aggregate the outputs of several
SVMs in the SVM ensemble. This combination consists of a
double layer of SVMs hierarchically where the classification
results of several SVMs in the lower layer feed into a super SVM
in the upper layer.
The final decision of the SVM ensemble in double-layer
hierarchical combining is determined by the decision function of
the super SVM in the upper layer that takes outcome of all other
SVMs decision function. However, using this double layer
approach can severely affect the time and memory requirements
of the approach. So, this study has used majority voting as an
aggregation strategy.

4. EXPERIMENTAL EVALUATION

4.1 Corpora and Sentiment Lexicons
Two datasets belonging to totally different domains (movies and
hotels) were selected to evaluate the proposed approaches in this
paper. The movie reviews dataset was originally prepared by Pang
and Lee (2004). This dataset contains movie reviews collected
from IMDb.com (Internet Movie Database) [25]. This dataset is
one of the best known databases to be found in the sentiment
analysis literature and is also known as polarity dataset v2.0 or
Cornell Movie Review Dataset. There are a total of 1,000 positive
and 1,000 negative reviews in the dataset to represent two classes
of sentiments.

The hotel reviews dataset containing 2000 hotel reviews was
prepared by extracting hotel reviews of 54 different hotels in
popular travel destinations in India from the websites:
TripAdvisor (tripadvisor.com) and Yatra (yatra.com). The reviews
were annotated by independent subject experts and were classified
in terms of the overall sentiment orientations as being positive or
negative. This study has adopted the same approach as in [22, 25]
that annotated hotel reviews with more than 3 star ratings as being
positive and hotel reviews with less than 3 star ratings as being
negative. We have discarded reviews with 3 stars (neutral) to
restrict our work for binary sentiment analysis.

4.2 Performance Evaluation
In this work we have used overall accuracy (OA) and F1 Score as
performance evaluation matrices. The confusion matrix shown in
Table 2 is for used for evaluating the performance of classifiers.

1

()

()
()

t

t i iy SVM x
t

t

D i
D i e

Z

α

+

−

=

Table 2. The confusion matrix
 Predicted positives Predicted negatives

Actual positive
examples

Total True Positive
examples (TP)

Total False
Negative examples

(FN)
Actual negative

examples
Total False Positive

examples (FP)
Total True Negative

examples (TN)

The performance of sentiment classification is evaluated by the
Overall Accuracy, which is given by:

(9)

Another popular evaluation matrix is F1 score which is derived
from the combination of Precision and Recall. F1 score, Precision,
and Recall are defined by:

 (10)

(11)

(12)

4.3 Experimental Results
This section describes the experiments and results of the proposed
approach. Java based implementations on Microsoft Windows
platform were used to implement the boosting, bagging and SVM
classifiers. The LibSVM wrapper classes were used to build the
SVM classifier. LibSVM provides reports for statistics on the
confusion matrix, precision, recall, ROC score, etc. This study has
used radial basis kernel for SVM as this function has been
reported to have good performance for sentiment based
classification in prior research studies [31].

For bootstrapping, we randomly re-sampled the existing training
dataset with replacement to make new training data sets. For
boosting, we iteratively re-sampled data samples with replacement
according to the updated probability distribution from the training
data set. We trained each SVM independently over the replicated
training data set and aggregated several trained SVMs via
majority voting. For avoiding the over-fitting problem, each
classifier has been validated using 10 folds in which we
performed 10 independent runs of experiments and then took
average performance of all the runs to report in the results.

However, some studies have criticized the use of the cross-
validation tests for comparing classifiers. The research findings
point out that, while the mean classification accuracy across the
cross validation folds is an unbiased estimate of the true accuracy,
the variance may be optimistically biased for many classifiers.
This may lead to spurious ranking of the classifiers as per
accuracy and performance. But, in this study we have used 10
folds cross validation for the sake of standard comparison.

4.3.1 Results on Movie Reviews Dataset
Instead of including an overwhelming number of tables, we have
decided to visualize the results in a nontraditional way using
comparative charts. Figure 1, 2, and 3 shows accuracy, precision
and recall of sentiment based classification on movie reviews
dataset. The proposed approach gave consistent accuracy with
information gain based feature selection and gave up to 93%
accuracy for 800-2000 selected features. SVM with boosting has
shown best accuracy of 93% for movie reviews domain. The best
accuracy of 92% was achieved by SVM with AdaBoost, and
classical single SVM was the worst performer in all four SVM
implementations. Similar results were obtained for recall and
precision for the movie reviews dataset (Figures 2 and 3).

0.75

0.80

0.85

0.90

0.95

SVM
SVM with Ba
SVM with Bo
SVM with Ad

Ac
cu

ra
cy

 Figure 1. Accuracy of Boosted SVM on Movies Reviews

0.75

0.80

0.85

0.90

0.95

SVM
SVM with Ba
SVM with Bo
SVM with Ad

Re
ca

ll

 Figure 2. Recall of Boosted SVM on Movies Reviews

4.3.2 Results on Hotel Reviews Dataset
Similar results were obtained for the hotel reviews dataset. SVM
with boosting and SVM with AdaBoost outperformed the other
two methods. This study has selected top-n features (n=50 to
10000) ranked as per information gain in the hotel reviews corpus.

TP + TN
Overall Accuracy =

TP + FP + TN + FN

TPPrecision =
TP + FN

TPRecall =
TP + FP

2 ? Precision ? Recall1 Score =
Precision + Recall

F

Boosting has clearly improved the classification performance of
SVM. The results in recall and precision were also consistent with
the results on accuracy (Figures 4 to 6). It is obvious that the
proposed approach exceeds the base classifier at the accuracy of
sentiment classification for both the datasets. We have selected
sentiment bearing text from two different domains in order to
elucidate the performance of the proposed approach for cross
domain sentiment analysis.

The results on movie and hotel reviews are supporting the view
that up to 2000 features selected by some well established feature
selection method like information gain can give good results.
Selecting features more than this range does not lead to
improvement in classification results. Figures 1-6 confirm that
number of features ranging from 500 to 2000 can be a reasonable
trade-off among learning time, computational effort and
acceptable level of ensemble classifier accuracy.

0.75

0.80

0.85

0.90

0.95

SVM
SVM with Bag
SVM with Boo
SVM with Ada

Pr
ec

isi
on

Figure 3. Precision of Boosted SVM on Movies Reviews

0.75

0.80

0.85

0.90

0.95

SVM
SVM with Ba
SVM with Bo
SVM with Ad

Ac
cu

ra
cy

Figure 4. Accuracy of Boosted SVM on Hotel Reviews

Figure 5 and 6 shows comparison of precision and recall for all
four SVM implementations. The F1-score values can be derived
from the precision and recall values as per Equation 11. The

results clearly indicate that boosting is suitable for sentiment
based classification with performance better than other machine
learning techniques used in previous studies [30]. Literature also
confirms that boosting can be used with any base classifier
capable of handling weighted training instances and SVM is a
good example of such classifiers [9, 13, 36]. Although the base
classifiers are not restricted to belong to a certain classifier family,
this study supports the view that virtually all classifiers can work
with boosting algorithms.

5. DISCUSSION
This paper proposes a sentiment classification approach using
boosted SVM. Information gain was used to extract sentiment
representing features, and different boosting and bagging
approaches were used to train the SVMs. The results on movie
reviews and hotel reviews corpuses have shown that the proposed
approach has succeeded in improving the performance of SVM
for sentiment based classification of online reviews from two
different domains. The boosting of SVM and input feature
selection are important tasks for better sentiment classification.
The results on movies and hotel review corpora of 2000 reviews
have shown that our approach has succeeded in improving
performance of SVM when used as a weak learner for sentiment
based classification.

SVMs usually suffer from biased decision boundaries (in case of
the hyperplane), and studies have shown that their prediction
performance drops dramatically when the data is highly skewed.
Moreover, the practical SVM has been implemented based on the
approximation algorithm to improve the time and space
complexity of the algorithm. So, the obtained classification
performance is far from the theoretically expected level of it.

The proposed approach combines integrated sampling techniques
with an ensemble of SVMs to improve the sentiment prediction
performance. The integrated sampling techniques can be further
experimented with to deal with issues like over-sampling and
under-sampling that play a dominant role in text classification and
sentiment analysis tasks.

0.75

0.80

0.85

0.90

0.95

SVM
SVM with Ba
SVM with Bo
SVM with Ad

Re
ca

ll

Figure 5. Recall of Boosted SVM on Hotel Reviews

0.75

0.80

0.85

0.90

0.95

SVM
SVM with Ba
SVM with Bo
SVM with Ad

Pr
ec

isi
on

Figure 6. Precision of Boosted SVM on Hotel Reviews

However, this study has restricted its scope for binary sentiment
analysis but we hypothesize that the advantage of using the SVM
ensemble over a single SVM can be achieved equally in the case
of multi-class classification (as in positive, negative and neutral
sentiment). Since the SVM is originally a binary classifier, many
SVMs should be combined to achieve multi-class classification.
The SVM based ensemble classifier for the multi-class sentiment
based classification can be a good extension of the approach
described in this study. It will be interesting to explore the
improvement of classification performance in the multi-class
sentiment based classification by taking the SVM ensemble where
each SVM classifier is designed for one of the multi-classes
(positive, negative and neutral) sentiment.

6. CONCLUSION
Ensemble learning approaches for improving performance of
weak classifiers is a significantly promising trend in current
research on machine learning. The ensemble method finds a
highly accurate classifier by combining many moderately accurate
component classifiers. Bagging and boosting are powerful and
popular approaches for creating ensemble classifiers. Specifically,
the results show that SVM ensemble with bagging or boosting
significantly outperforms a single SVM in terms of accuracy of
sentiment based classification. Although, we have used a RBF
kernel to create the boosted SVM, the same Framework can be
tested with different kernel functions in future works.

The theoretical justifications and empirical findings of this study
demonstrate that our method is effective. We find that the
proposed boosted SVM classifiers are robust for sentiment based
classification in two ways. Firstly, they improve the performance
of the base SVM classifier when trained with training set; and
secondly, they are sufficiently simple to be widely applicable.
Future work may involve adopting this bagging / boosting based
approach to classify sentiment in other types of text like blogs,
Twitter posts, Facebook, and so on, and experiments with other
types of base classifiers like neural networks.

In recent years, several other approaches have been proposed to
develop ensemble classifiers like artificial immune-system
algorithms [43], random subspace [13] based different feature

subsets and Rotation Forest [29] with transforming the feature
subsets by principal component analysis (PCA). Although there
are many different proposed methods to create ensemble
classifiers, all of them are constructed to combine more than two
different classifiers based on the diversity and individual error of
classifiers. Evaluating these recently proposed ensemble classifier
approaches for sentiment classification would also be an
interesting research area to explore in future.

7. ACKNOWLEDGMENTS
The authors wish to thank ACM RACS 2013 reviewers for the
helpful comments to improve this work. Further, the authors wish
to thank Mr. Biresh Kumar, for providing assistance in preparing
the hotel reviews dataset and Prof. Lillian Lee, for providing
Movie Reviews dataset for research purposes.

8. REFERENCES
[1] Annett, M., and Kondrak, G. A comparison of sentiment

analysis techniques: Polarizing movie blogs. Advances in
Artificial Intelligence, (2008), 5032, 25–35.

[2] Boiy, E., Hens, P., Deschacht, K. and Moens, M. F.
Automatic sentiment analysis of on-line text. In Proceedings
of the 11th International Conference on Electronic
Publishing (Vienna, Austria) 2007.

[3] Breiman, L. Bagging predictors. Machine Learning, vol. 24,
issue 2, August 1996, 123–140.

[4] Chen, C., Ibekwe-SanJuan, F., SanJuan, E., and Weaver, C.
Visual analysis of conflicting opinions. In IEEE Symposium
on Visual Analytics Science and Technology, 2006, 59–66.

[5] Chevalier, J. A., and Mayzlin, D. The effect of word of
mouth on sales: Online book reviews. Journal of Marketing
Research, 43, 3 (2006), 345−354.

[6] Cui, H., Mittal, V., and Datar, M. Comparative experiments
on sentiment classification for online product reviews. In
Proceedings of AAAI (Boston, Massachusetts, July 16-20,
2006). 2006, 1265–1270.

[7] Dasgupta, S., and Ng, V. Topic-wise, sentiment-wise, or
otherwise? identifying the hidden dimension for
unsupervised text classification. In Proceedings of the
EMNLP’09 (Morristown, NJ, USA), ACL, 2009, 580–589.

[8] Dave, K., Lawrence, S., and Pennock, D. M. Mining the
peanut gallery: opinion extraction and semantic classification
of product reviews. In Proceedings of the 12th international
WWW conference (Budapest, Hungary, May 20–24, 2003).
2003, 519–528.

[9] Dietterich, T. An experimental comparison of three methods
for constructing ensembles of decision trees: bagging,
boosting, and randomization, Mach. Learn. 26 (1998) 1–22.

[10] Freund, Y., and Schapire, R. Experiments with a new
boosting algorithm. In Proc. 13th International Conf. on
Machine Learning (ICML), Bari, Italy, 1996, 148–156.

[11] Gamon, M. Sentiment classification on customer feedback
data: noisy data, large feature vectors, and the role of
linguistic analysis. In Proceedings of the 20th international
conference on Computational Linguistics (Geneva,
Switzerland). ACL, 2004.

[12] Godbole, N., Srinivasaiah, M., and Skiena, S. Large-scale
sentiment analysis for news and blogs.In Proceedings of the
International Conference on Weblogs and Social Media
(ICWSM’07) 2007.

[13] Ho, T. K. The random subspace method for constructing
decision forests. IEEE Transactions on Pattern Analysis and
Machine Intelligence, (1998), 20 (8), 832–844.

[14] Joachims, T. Making large-scale support vector machine
learning practical, Advances in Kernel Methods: Support
Vector Machines, MIT Press, Cambridge, MA, 1999.

[15] Kamps, J., Marx, M., Mokken, R. J., and De Rijke, M. Using
wordnet to measure semantic orientations of adjectives. In
Proceedings of 4th International Conference on Language
Resources and Evaluation (Lisbon, PT). 2004, 1115–1118.

[16] Kang, H., Yoo, S. J., and Han, D. Senti-lexicon and
improved Naïve Bayes algorithms for sentiment analysis of
restaurant reviews. Expert Systems with Applications (2011),
doi:10.1016/j.eswa.2011.11.107.

[17] Kim, D. and Kim, C. Forecasting time series with genetic
fuzzy predictor ensemble. IEEE Trans. Fuzzy Systems 5 (4)
(1997) 523–535.

[18] Kim, H.C., Pang, S., Je, H.M., Kim. D., and
Bang, S.Y. Support vector machine ensemble with
bagging. Lect Notes Comput Sci. (2002) 131–141.

[19] Kim, H.C., Pang, S., Je, H.M., Kim. D., and
Bang, S.Y. Constructing support vector machine ensemble.
Pattern Recognition 36 (2003) 2757 – 2767.

[20] Osherenko, A. and André, E. Lexical affect sensing: Are
affect dictionaries necessary to analyze affect? In
Proceedings of the 2nd international conference on affective
computing and intelligent interaction (ACII’07) Springer-
Verlag, Berlin. 2007, 230-241.

[21] Paltoglou, G., and Thelwall, M. A study of information
retrieval weighting schemes for sentiment analysis. In
Proceedings of the 48th Annual Meeting of the ACL, 2010,
1386–1395.

[22] Pang, B., and Lee, L. A sentimental education: sentiment
analysis using subjectivity summarization based on minimum
cuts. In Proceedings of the 42nd annual meeting of the
Association for Computational Linguistics (ACL) (Barcelona,
Spain, July 21–26, 2004). 2004, 271–278.

[23] Pang, B., and Lee, L. Opinion mining and sentiment analysis.
Foundations and Trends in Information Retrieval, 2(1-2),
(2008), 1-135.

[24] Pang, B., and Lee, L. Seeing stars: exploiting class
relationships for sentiment categorization with respect to
rating scales. In Proceedings of the 43rd annual meeting of
the ACL (University of Michigan, USA, June 25–30, 2005).
2005, 115–124.

[25] Pang, B., Lee, L., and Vaithyanathan, S. Thumbs up?
sentiment classification using machine learning techniques.
In Proceedings of the ACL-02 conference on Empirical
methods in natural language processing. ACL, 2002.
Volume 10.

[26] Platt, J. Fast training of support vector machines using
sequential minimal optimization. In: Scholkopf, B., Burges,
C., Smola, A. (eds.): Advances in Kernel Methods - Support
Vector Learning. MIT Press (1998).

[27] Porter, M. F. Snowball: A language for stemming algorithms.
2001.

[28] Prabowo, R., and Thelwall, M. Sentiment analysis: A
combined approach. Journal of Informetrics, 3(2), (2009),
143–157.

[29] Rodriguez, J.J. and Kuncheva, L.I. Rotation forest: A new
classifier ensemble method. IEEE Transactions on Pattern
Analysis and Machine Intelligence 28 (10), (2006) 1619–
1630.

[30] Sharma, A. and Dey, S. A comparative study of feature
selection and machine learning techniques for sentiment
analysis. In Proceedings of the Proceedings of the ACM
Research in Applied Computation Symposium (San Antonio,
Texas, 2012). ACM, 2012, 1-7.

[31] Sharma, A. and Dey, S. Performance investigation of feature
selection methods and sentiment lexicons for sentiment
analysis. IJCA Special Issue on Advanced Computing and
Communication Technologies for HPC Applications, 3
(2012), 15-20.

[32] Sharma, A. and Dey, S. A document-level sentiment analysis
approach using artificial neural network and sentiment
lexicons. ACM SIGAPP Applied Computing Review, 12, 4
(2012), 67-75.

[33] Shimada, K., and Endo, T. Seeing several stars: A rating
inference task for a document containing several evaluation
criteria. In Proceedings of the PAKDD. Springer, LNCS
volume 5012, 2008, 1006–1014.

[34] Tan, S., and Zhang, J. An empirical study of sentiment
analysis for Chinese documents. Expert Systems with
Applications, 34, 4 (2008), 2622-2629.

[35] Thomas, M., Pang, B. and Lee, L. Get out the vote:
Determining support or opposition from congressional floor-
debate transcripts. In Proceedings of the 2006 conference on
empirical methods in natural language processing (EMNLP
2006) (Sydney). 2006, 327–335.

[36] Trivedi, S. K. and Dey, S. Interplay between Probabilistic
Classifiers and Boosting Algorithms for Detecting Complex
Unsolicited Emails. Journal of Advances in Computer
Networks 1, 2 (2013), 132-136.

[37] Tsytsarau, M., and Palpanas, T. Survey on mining subjective
data on the web. Data Mining and Knowledge Discovery
(2011), 1-37.

[38] Turney, P. D. Thumbs up or thumbs down?: semantic
orientation applied to unsupervised classification of reviews.
In Proceedings of the 40th annual meeting on ACL (ACL’02)
(Morristown, NJ, USA) ACL, 2002, 417–424.

[39] Vapnik, V. The nature of statistical learning theory. New
York Springer (1995).

[40] Xia, R., Zong, C., and Li, S. Ensemble of feature sets and
classification algorithms for sentiment classification.
Information Sciences, 181, 6 (2011), 1138-1152.

[41] Ye, Q., Zhang, Z., and Law, R. Sentiment classification of
online reviews to travel destinations by supervised machine
learning approaches. Expert Systems with Applications, 36, 3
(2009), 6527–6535.

[42] Zhu, F., and Zhang, X. Impact of online consumer reviews
on sales: The moderating role of product and consumer
characteristics. Journal of Marketing, 74, 2 (2010), 133-148.

[43] Zhang, X., Wang, S., Shan, T., and Jiao, L.C. Selective
SVMs ensemble driven by immune clonal algorithm. In:
Rothlauf, F. (Ed.) Proceedings of the EvoWork- shops,
Springer, Berlin. (2005), 325–333.

ABOUT THE AUTHORS:

Anuj Sharma is Assistant Professor of Information Technology at Chandragupt
Institute of Management, Patna, India. He completed his doctoral programme
(Fellow Programme in Management) in Information Systems from Indian Institute
of Management Indore, India, and Master of Technology from National Institute of
Technology Jalandhar, India. His research interests are sentiment analysis and
opinion mining, social media mining and artificial intelligence.

Dr. Shubhamoy Dey is Professor of Information Systems at Indian Institute of
Management Indore, India. He completed his Ph. D from the School of Computing,
University of Leeds, UK, and Master of Technology from Indian Institute of
Technology (IIT- Kharagpur), India. He specializes in Data Mining and has 25 years
of research, consulting and teaching experience in UK, USA and India.

Aspect-driven, Data-reflective and Context-aware
User Interfaces Design

Tomas Cerny, Karel Cemus
Czech Technical University,

Charles square 13
12135 Prague 2, Czech Rep.

{tomas.cerny,cemuskar}@fel.cvut.cz

Michael J. Donahoo, Eunjee Song
Baylor University,

One Bear Place #97356
Waco, TX, 76798-7356, USA

{jeff_donahoo,eunjee_song}@baylor.edu

ABSTRACT
The increasing use of Web-based applications continues to
broaden the user groups of enterprise applications at large.
Since ordinary users often equate the quality of user in-
terface (UI) with the quality of the entire application, the
importance of providing easy-to-use UIs has been signifi-
cantly increasing. Unfortunately, designing a single UI sat-
isfying all end users remains challenging. To address this
issue, researchers and developers are looking to Context-
aware/Adaptive UIs (CUIs) that aim to provide end users
with more personalized user interaction experiences. Al-
though multiple proposals have been made, very few pro-
duction systems provide such malleable interfaces due to the
excessive cost of development and maintenance.

In this paper, we propose a technique that aims to reduce
development and maintenance efforts of CUI to a level com-
parable with a single UI. Unlike most of the existing CUI
approaches, our technique does not involve an external UI
model. Instead, it aims to reflect runtime-information and
structures already captured in the application, while extend-
ing them to provide an appropriate CUI. With this tech-
nique, developers do not design forms or tables directly for
each page or panel. Instead they design generic and reusable
transformation rules capable of presenting application data
instances in the UI while considering the runtime context.
To demonstrate our technique and its impact on CUI devel-
opment and maintenance, we provide a case study. More-
over, we present our experience from its application to an
existing production-level enterprise application, with high
demands on performance.1

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—User interfaces; I.2.2 [Artificial intelligence]: Au-
tomatic Programming—Program synthesis

General Terms
Design, Reliability

Keywords
Aspect-driven design, Inspection-based approach, Adaptive
user interfaces, Reduced maintenance/development efforts

1Copyright is held by the authors. This work is based on an earlier
work: RACS’13 Proceedings of the 2013 ACM Research in Adaptive
and Convergent Systems, Copyright 2013 ACM 978-1-4503-2348-2/13/10.
http://doi.acm.org/10.1145/2513228.2513278

1. INTRODUCTION
Despite broad research in the area of Context-aware/Ada-
ptive User Interfaces (CUIs), it is common practice in pro-
duction applications to design a single UI that serves all
types of users and contexts [26]. The primary reason for this
one-size-fits-all approach to UI design relates to the costs of
development and maintenance for multiple UI versions. For
example, Kennard et al. [14] states that around 48% of ap-
plication code and 50% of development time are devoted to
implementing UIs. Thus, providing multiple versions of UIs
for individual users is typically considered to be unrealistic.

With most existing programming techniques, it is difficult
to support adaptive UI features because such approaches
capture field-specific information twice, once in the data-
model and again as a reference in the presentation that is
often specified through a domain specific language (DSL)[23]
with weak type safety. In addition, current practices realize
multiple UI concerns [11] mixed together in a single compo-
nent, which makes such a component less cohesive and hard
to reuse. As shown later, this results from the inability of
conventional approaches to capture different concerns sepa-
rately [16]. The development of less cohesive components re-
sults in multiple, highly-similar components that only differ
in details. Having a multi-location field definition and mul-
tiple similar components for a slightly different presentation
brings further difficulties throughout the development. For
example, changing the underlying data definition requires
all of its presentation components to be updated, which is
a non-trivial task. Considering that such a component up-
date process is manual, it is most likely to introduce more
errors (particularly with no type safety) or omit required
component updates, which eventually results in presenta-
tion inconsistencies.

Our proposed technique avoids information restatement, as
well as supports separation of concerns [11]. The first part
is achieved by the utilization of information from an ap-
plication’s data-model and its existing structures that are
obtained from the automated code-inspection and by re-
flecting its meta-model. Such information is then extended
and transformed into the UI. To support the second part,
this transformation takes multiple steps and bases itself on
model-driven development (MDD) [17], generative program-
ming (GP) [9] and aspect-oriented programming (AOP) [16].
Concerns that are in conventional approaches tangled to-
gether are now separated into easy-to-maintain, reusable
units, called aspects. The transformation process weaves all
separated concerns together at runtime and thus allows us to

consider user-context conditions individually. In addition,
the transformation process uses a set of generic mapping
rules [20] that allows designer to adjust the output as well
as to integrate any third-party runtime conditions. From the
end-user perspective, the resulting UI dynamically adapts to
context and considers all concerns to satisfy expectations.
To evaluate our technique, we developed an open-source li-
brary called AspectFaces and demonstrate its use in a case
study with an enterprise JEE6 application. Furthermore,
we provide our experience from a production-level applica-
tion accessed by users from all around the world with high
performance demands.

The main contribution of our approach is the reduction of
information restatement in UI development and the separa-
tion of UI concerns that are directly responsible for tangled
UI code. Multiple information restatement steps required
in existing approaches collapse into a single focal point of
information in our approach, which makes the enforcement
of its UI compliance easier. Since it is executed at runtime,
it can dynamically adapt the UI to a user-specific context.
The approach reduces both development and maintenance
efforts through component reuse. Despite the addition of
these benefits, our approach has a minimal impact on appli-
cation performance.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the background of adaptive user interface
development. Section 3 provides an overview of existing ap-
proaches. Our approach is presented in detail in Section 4,
and its evaluation is discussed in Section 5. The final section
presents our conclusion and future work.

2. BACKGROUND
One approach often taken to deal with system complexity is
to break the system down into units of behavior or function
such as subsystems, modules or objects, called functional de-
composition in Object-Oriented Programming [16] or more
generally in General-Purpose Languages (GPL). Such a de-
composition concept is necessary because it helps one to put
logically-related concerns together, improves the readability
and reusability, and eventually supports the ease of main-
tenance [18]. In addition to functional decompositions, GP
[9] and AOP [16] proposes another way of thinking about
program structure. GP proposes the use of a GPL language
together with problem descriptions in the form of DSL [23].
The resulting application code is generated at compile time
from the DSL specifications that extends the GPL code or
produces its variations. In AOP the key unit of modularity
is an aspect. Aspects can integrate to GPL modules at run-
time or compile time. An aspect enables the modularization
of concerns, such as transaction management, that normally
cross-cut multiple modules and objects [18].

UI development also employs such decompositions, but data
presentation makes the decomposition process more chal-
lenging, especially when using DSL to describe the UI, which
is common for web systems. For example, consider design-
ing the Person form given in Figure 1. The arrows highlight
various concerns considered in the design. Arrow 1 shows
that form fields are bound to a particular data class - an
entity, and its fields. This binding means that, for example,

Person

String : email
String : name
Country: country

Email
Name
Country

1. Data binding

Label
4. Security 5. Input validation 2. Field presentation 3.Layout

Label @

Figure 1. UI form decomposition

Listing 1. Sample code snippet for form in Figure 1
<table class=" classLayout">
<tr>
<td>Email:</td>
<td><x:input id="email" value ="#{i.email}"

render ="#{ bean.render(’email ’)}"
vali date ="#{ bean.validate(’email ’)}"/> </td>

</tr><tr>
<td>Name:</td>
<td><x:input id="name" value ="#{i.name}"/> </td>

</tr><tr>
<td>Cou ntry:</td>
<td><x:smenu id="cou ntry" value ="#{i.country}"/> </td>

</tr>
</table>� �
when the field called name in Person splits into first name

and last name, its corresponding form field must split as
well. Unfortunately, there is no enforcement mechanism to
guarantee that the corresponding entity and its UI comply
with each other unless a language with type-safety is used.
An entity field UI presentation is denoted by Arrow 2; an
appropriate UI widget with its properties are chosen based
on the type of a particular field and its constraints. Anytime
a field constraint changes, an underlying widget or its prop-
erties should reflect the change as well. However, there is
no automated mechanism to do so, thus a manual update is
necessary for each field change. Arrow 3 demonstrates that
the form may allow one to select a particular presentation
layout. A layout is responsible for rearranging form fields in
a given order, grouping them together or presenting them
within a given screen size. Designing a non-trivial form lay-
out often results in a layout code entangled together with
form fields. We provide an example of tangling such con-
cerns in Listing 1. When an application adjusts a form lay-
out at runtime based on a given condition, it is possible that
multiple cloned variants of the same form must physically
exist. For example, consider a slight modification of layout
in Listing 1 for a user with wide screen. We would place
the name to top-left, country to top-right and the email to
bottom spanning both columns, in this case only the layout
concern changes, but other concerns are unchanged, but hav-
ing all the concerns at the same place limits the reuse and
we end up with two forms. Next, Arrow 4 indicates that
form fields should consider additional UI conditions such as
security or visibility. For example, some fields should be
rendered as read-only or left unrendered based on the given
user authorization. In order to apply the conditionals, we
further extend the form fragment, leading to more complex
readability and perhaps duplication among fragments ap-
plying various layouts. Finally, Arrow 5 shows that certain
constraints from the bound entity fields should be applied
for its input validation. For instance, web applications with
client-side validation must restate constraints in a scripting
language, such as JavaScript. Listing 1 shows a very sim-

Field presentation

Security

Input validation Data binding

Layout

Security

Field presentation

La
yo

ut

Input validation
 Dimensions 1-3 Dimensions 3-5

Data binding

Etc.

(a) concern space (b) implementation space

Figure 2. (a) Concern / (b) Implementation space

plified implementation of Figure 1; this JavaServer Faces
(JSF) DSL code shows data binding to the form through a
data instance i (value attribute in widgets), field representa-
tions through UI components (x:input), table layout tangled
through the fields, security condition (render attribute) and
validation (validate attribute) determined by methods in a
controller accessible in the context as bean. The mainte-
nance of such fragments becomes difficult because all five
concerns are captured together, and it is non-obvious which
code refers to a specific constraint such as security, presen-
tation or layout. The reuse of individual concerns in such
UI fragments is very limited since it only allows slight varia-
tions of concerns. CUI design only compounds the problem
since it typically increases the number of concerns.

With the AOP approach [18] this same problem can be
seen as an n-dimensional concern space that is expressed
in the implementation space using a one-dimensional lan-
guage. Unfortunately, orthogonality of concerns in the con-
cern space gets lost (collapsed) when it is mapped to the one-
dimensional implementation space. For our case, we have a
5-dimensional concern space as shown in Figure 2 (a). This
concern space is mapped into one-dimensional implementa-
tion space in Figure 2 (b). This corresponds to what we
see in Figure 1 and the one-dimensional implementation in
Listing 1.

So far we looked over a basic UI design example. Next, let us
consider our expectations of an effective UI design. In order
to design a CUI effective from the development perspective,
we must consider multiple quality attributes. A good CUI
design should allow designers to capture the expected func-
tionality but also other non-functional attributes. First, it
provides multiple presentations, different layouts, easy ad-
dressing and integration of various concerns, adaptive to ap-
plication runtime context, third-party integration (security),
etc. Second, it should be easy to develop and maintain these
concerns with low coding effort, while preserving develop-
ment approaches already known to the developer. Third,
a good design should reduce information restatement/dupli-
cation across the application and, if possible, mitigate errors
caused by UI inconsistency. Fourth, while reducing restated
information a single focal point of information should exist
to reduce multi-location changes. Fifth, a good design sep-
arates tangled concerns [11] into readable code fragments to
support their reuse and maintenance.

When we consider conventional approaches and look back to
Figure 2, we should note that multiple other concerns may
exist for CUI, thus growing the concern space. For example
consider concerns such as user’s location, data submission
error-rate, age, temporal information or layout adjusted to

the user’s screen size, etc. With no doubt, since the num-
ber of concerns in Figure 2 (a) grows and the complexity
represented by Figure 2 (b) becomes even greater, it is not
reasonable to keep concerns tangled together. Such tangling
is directly responsible for increased development and mainte-
nance efforts, diminishing readability, limiting reuse, higher
possibility creating errors, etc.

3. RELATED WORK
We split the description of related work onto two parts. The
first introduces existing development approaches that could
be used to improve the UI design. The second part describes
existing UI design approaches and CUI.

3.1 Development approaches
Model-Driven-Development (MDD) [8] argues that a design
should involve models that act as a centralized location for
information and design decisions. Such a model is then
transformed into application code. The idea of MDD is
promising regards reduction of restated information, on the
other hand we must consider that majority of productions
systems involve coding and to transform existing systems
to MDD would be expensive. For instance, consider a sit-
uation when an application applies pure Object-Oriented
Design (OOD) to its backend, while the frontend is de-
signed in a MDD way. Such model would most likely use
a custom DSL language for its description. As a result, the
model must restate information from the backend. In ad-
dition, maintaining the connection between UI and backend
requires significant effort. Furthermore, in MDD, problems
such as cross-cutting concern applicable to code develop-
ment are present as well [25]. Although we could use multi-
ple models to capture various concerns and integrate them
together, the appropriate generic integration mechanism is
missing [29]. Another issue is that MDD suffers during adap-
tation and evolution management [25]. Once deployed, such
systems experience changes in variations, which often take
place in code rather than in the model itself so code regener-
ation from the higher abstraction model can be impractical
and the manually added information can get lost [8]. Design-
ing a system that considers multiple variations with MDD
often leads to a compile time allocation of many states and
configurations that can grow exponentially [25]. A runtime
solution is less common and such use can degrade perfor-
mance [30].

Generative Programming (GP) [9] emphasizes specific do-
main methods and their integration with OOP. GP can be
seen as programming that generates source code through
domain-specific code fragments or templates to improve de-
signer productivity. Authors of GP [9] define it as a design
approach to combine and generate specialized and highly op-
timized systems fulfilling specific requirements. The goal is
to address the gap between program code and domain con-
cepts, support reuse, adaptation, simplify management of
component variants and to increase efficiency. It addresses
separation of concerns [11] that propose dealing with one is-
sue at the time and avoiding code that mixes multiple con-
cerns. It further addresses parameterization or separation
of the problem space from the solution space. Such sepa-
ration splits the problem space and its domain-specific ab-

stractions and maps them to the solution space with avail-
able implementation components (similar to what we show
in Figure 2). GP uses DSL with the loss of language general-
ity and emphasizes automatic configuration and generation
at the compile time, similar to MDD. While there are sub-
stantive differences between MDD and GP, we note many
similarities. While the MDD uses models and GP uses OOD
and DSL, a model is often designed and described through
a DSL, thus the parallel is close. GP directly addresses sep-
aration of concerns, which is not the primary goal for MDD.
On the other hand, both lack the ability to use runtime
information and effectively perform at runtime. The GP in-
tegration of concerns does not have a generic format, which
exists in AOP.

The features lacking in MDD and GP are addressed by AOP
[16, 18, 32]. AOP provides methods that allow us to capture
different concerns separately in independent code fragments,
as well as enabling runtime weaving. The mechanism to in-
tegrate concerns is well described and generic. The problem
is decomposed to functional OOD units and aspects, and
these weave together to obtain system implementation. In
the OOD units, we indicate the possible aspect integration
location through join points. These join point are recognized
by the aspect weaver, a compiler that integrates aspects to
the resulting code/behavior. The product of aspect weaver
can have the same execution properties as tangled code, but
with the advantage that all the concerns can be defined sep-
arately to support readability and maintenance. In [16] au-
thors shows reduction of the total of lines of code (LOC)
from 30,000 LOC to 1,000 LOC for the AOP version with
the same properties. Compared with AOP, GP [9] has larger
scope, involves DSL, and emphasizes the automatic config-
uration and genericity at the compile time. AOP weaving
can be made at compile time or at runtime. The weaving
process often involves meta-programming [9, 12] introduced
next.

Meta-programming (MP) allows programs and languages
to modify their structure and behavior at runtime. Many
contemporary, statically-typed programming languages have
the ability to describe themselves, which is called Reflection
[12]. Reflection is based on an architectural design pattern
[5], which gives us an opportunity to inspect classes, their
fields and methods while not knowing their names at com-
pile time. This mechanism allows programs to dynamically
adapt the program to different situations. MP is a great
instrument for code inspection and information extraction.
On the other hand, we must consider the impact on perfor-
mance. To face the performance bottleneck, it is possible to
use cache or to involve code generation at application de-
ployment time. Another issue for MP is its testing, because
MP programs are not type safe and thus its maintenance
becomes complex.

We summarize these approaches in Table 1. We compare
the selected abilities such as, whether it applied to runtime,
addresses separation of concerns, reduces restated decisions
and information restated from existing structures, whether
it applies inspection, how well it does for evolution manage-
ment, if it is adaptable towards changes or existing struc-
tures and its compatibility with OOD.

Table 1. Comparison of design approaches

Ability/Approach OOD MDD GP AOP MP

Compile time approach yes yes yes yes yes
Runtime time approach yes slow no yes yes
Separation of concerns no no yes yes no
Reduces restated decisions no yes yes yes no
Reduces restated information* no no no no yes
Model or Code inspection no yes no no yes
Evolution management good bad good good bad
Adaptable towards changes* no no yes yes yes
Transformation based no yes yes yes no
Synergy with OOD - no yes yes yes
*(from existing code structures/application backend)

3.2 UI design approaches
UI design approaches could be divided into three groups, as
suggested by Kennard et. al. [15]: approaches using interac-
tive graphical specification, model-based UIs, or language-
based UI generation. The first group allows developers to
sketch UIs on the screen with the corresponding source code
automatically generated in the background. While this ap-
proach works for toy applications, it does not consider the
maintenance and advanced manual code changes required
by enterprise applications. Model-based UIs use a model
to describe the UI, which is then transformed to an appro-
priate UI presentation considering various conditions. Un-
fortunately, when a model binds to an existing application
backend, the model must restate information from it. The
language-based tools derives the UIs from the language and
domain objects. The advantage is that the UI is always con-
sistent with the application backend, a feature missing from
the previous groups, but domain objects are somewhat weak
with respect to UI description and this only basic UIs can
be derived [8].

In our research, we consider another view of UI design clas-
sification by classifying approaches into either restate-to-
extend or inspection-based. The first approach requires that
the same information in a system is captured twice at differ-
ent locations, while preserving its integrity. Such informa-
tion duplicity is then applied to a particular concern such
as UI presentation. Development using this approach typ-
ically involves interactive graphical tools, UI model-based
generation tools [19, 25], external models for UI represen-
tation [22], and DSL tools [13]. The main drawback of this
approach stems from the duplication of source information
and maintenance efforts when source information changes.

Inspection-based approaches use existing information acces-
sible by code-inspection. The main effort is placed on the
information source that must capture sufficient information
to derive a specific concern. Design using this approach typi-
cally involves language-based tools. The disadvantage of this
approach is that source information does not necessarily cap-
ture all needed concerns. Multiple research proposals such
as [7, 14, 15] utilize automated UI generation by applying
code-inspection. These approaches inspect previously cap-
tured information, build an ad hoc structural model, and
transform it to the UI. This simplifies both the develop-
ment and maintenance since it reduces restated informa-
tion. The difficulty is that such an approach cannot gener-
ate the UI unless provided additional information, typically
supplied by additional markup within the source informa-
tion [8]. Experience from industrial standards such as Java

Table 2. Comparison of related work

Features [28] [22] [3] [4] [19]
[24]

[25] [14]
[15]

[8]
[7]

[27]

Model-based - - + + + + - + -
Runtime approach + + + + - + + + -
Adaptive UI + + + + + + - - +
Reduces code - - + - + + + + +
Restate-to-extend - + + + + + - - +
Addresses cross-
cutting concerns

- - + - - + - - +

Code-inspection - - - - - - + + -
Uses enterprise
technology standards

- - - - - - + + +

EE [2, 10] shows that the data-model already capture addi-
tional markup for persistence and validation constraints, and
the same approach can be applied also for presentation [8]
and security. Our classification allows combining inspection-
based approach with model-based design [21], which is not
possible with the Kennard’s [15] classification.

However, both restate-to-extend and inspection-based ap-
proaches need to deal with information transformation to
the UI. Often we see hardcoded transformation rules, such
as in interactive graphical specification tools. Generic and
configurable rules allow designers wider options and adapta-
tions. Based on [20], generic mapping rules allow easy reuse
among systems. In our work, we provide such generic trans-
formation rules while considering aspect-query-based fea-
tures that involve data structures and field extensions. Fur-
thermore, none of the above approaches directly addresses
cross-cutting concerns, although related research on this to-
pic exists for model-based [25, 21] and GP approaches [27].

3.3 Context-aware UI
A basic overview of adaptability and adaptivity is provided
by [31]. Both terms refer to knowledge-based self-adaptation,
but in the case of adaptivity, it relates to interactive session
and adaptability that can be deduced before the interactive
session. CUI may address both these features. The idea
of CUI is studied in multiple domains. For example, we
can see its application to [28] electronic cooking assistants
in kitchens to adjust layout, in a hospital navigation case
[22] and in a house control unit example [3]. Multiple CUI
design methods require the target environment and possi-
ble variations of the user interface at design time [19, 24],
but in [4] the authors argue that future adaptive systems
need to consider runtime information to adapt, while design
time approaches are not sufficient. [25] and [3] apply aspect-
oriented techniques to a model-based approach to deal with
multiple degrees of variability that depends on user needs
and context, on the other hand they require to restate infor-
mation. Although, most of the CUI work focus on presenta-
tion, adaptability and adaptivity features of UI, they typi-
cally apply model-based approaches and restate information
from application backend. None of the related approaches
provide evaluation regarding runtime performance and pro-
duction experience, they rarely consider maintenance efforts,
and only indirectly address specific concerns such as lay-
out [28]. We provide the summary of selected related work
regarding the UI design in Table 2. In our approach, we
address all the mentioned features and elements as well as
avoid the restate-to-extend approach.

4. READ : RICH ENTITY ASPECT/AUDIT
DESIGN FRAMEWORK

As shown in the related work, in order to design a CUI with
low development and maintenance efforts, we should avoid
definition of an additional model that restates information
captured elsewhere in the application. Instead we should
consider a code-inspection approach (MP) and synergy with
knowledge about transformations (MDD & GP) as well as
to address separation of concerns (GP & AOP).

First, we specify information that we want to reuse such as
data structural information and their constraints. All these
can be found at the application data-model. Assuming that
the data-model design uses OOP and the language supports
reflective mechanisms, we gain access to data structures. Be-
sides this we need an access to the application context at
runtime. Thus when we need to display data in the UI, we
can inspect the given data class and get its structural model,
that captures information about the class, its fields and field
constraints.

Application context and structural model is then the subject
of transformation to the UI. In order to effectively handle
both adaptivity and adaptability, the transformation takes
place at runtime and uses generic, easy-to-extend transfor-
mation rules. In order to design such rules, a single rule
instance cannot bind to an individual data or data field but
to something more general. In our approach, each rule in-
stance consists of a query part and a suggestion, in the AOP
terminology a pointcut and an advice. The query part is an
evaluable boolean indicating whether the rule applies for a
given context (given data field in given context). If so, the
rule’s advice is given; if not a next rule in the list is consid-
ered. The query can question a data field structural model,
application context or both using logical and arithmetical
operations. The advice provides the integration DSL tem-
plate that is used for the data field.

A collection of customizable DSL templates is associated
with the transformation rules. Such template uses the tar-
get presentation language and integration rules in it, to inte-
grate additional concerns. An integration rule again consists
of a pointcut and an advice. The pointcut is uses the same
query constructs to question the data field structural model
and context. An advice is different; it is a DSL content that
can reference the structural model properties or context vari-
ables. All integration rules are considered for given template
if a rule pointcut holds, then the advice content embeds to
the template or resolves the reference to the structural model
(such as field name, type, etc.). The result of the template
interpretation is a UI code fragment in the target DSL lan-
guage representing given data field considering all concerns,
but layout.

Right after all data fields process through the transforma-
tion, then a proper layout template integrates. This process
is similar to XSLT. The resulting output is a DSL fragment
reflecting data, context and integrates all considered con-
cerns. The last part of our approach is runtime integration
of the resulting DSL code to the application UI. This in-
volves the DSL code compilation and UI embedding.

4.1 Introduction to READ conceptual model
Our framework involves AOP and, in order to describe an
AOP framework, [32] suggests describing its conceptual
model with three main components:

Join Point Model: defines available join points

Pointcut Language: defines the query language to select
a subset of join points

Adaptation Mechanism: allows adding or modifying
functionality at selected join points

These components describe existing frameworks such as As-
pectJ or Hyper/J in which we often modify or add function-
ality upon method call or code execution. In our case, the
adaptation mechanism does not constraint any method or
code execution but deals with transformation and composi-
tion.

In READ we identify two sources of join points: the 1)
structural data model and 2) application runtime context
(a subset exposed to the READ process). A structural data
model provides entity and field names, data types and field
meta-instructions with their parameters [10, 2]. Application
runtime context can consist of any kind of information, such
as user access rights, geo-location, local context for presen-
tation, device screen size, etc. We could even count user
error-rate throughout the application interaction and based
on that show a tooltip or help upon page load. Both sources
provide us join points that can be considered in the trans-
formation process. More specifically these join points allow
us to support generic/reusable transformation rules.

The AOP terminology deals with two types of join points
[32], static and dynamic. Static join points can be charac-
terized as a location in the source code; the selection criteria
refers to static structure, and it is known at compile time
where and how to enhance the code for all invocations. Dy-
namic join points correspond to elements in code, but at
the same time to a runtime condition that specifies the se-
lection only to certain invocations. While the application
context corresponds to the dynamic join points the struc-
tural data information consists of both types of join points.
For instance, the field name is static, while field access rights
denoted by field annotation can be dynamic.

The pointcut language defines the query language to select
a subset of join points. READ uses an expression language
known as Unified Expression Language[1] (EL). EL consists
of constructs for conditionals and arithmetical operations,
understands basic types, and can evaluate any expression
referring to its context. In READ, the EL context has ac-
cess to the elements of the structural model (from the field
perspective) and to dynamic context variables that are pop-
ulated by application designer. The pointcut language can
query all information in the EL context. It is also possible
to define custom utilities or functions that integrate third
party libraries and pass them to the context and thus ex-
pose them as dynamic join points. The language uses both
the state-based and specification-based constructs [32]. Later,
in the next section we show how to access elements for the
structural model and context from the EL.

The adaptation mechanism uses the above described join
points, and based on their association to a particular data

field or global context it selects an appropriate UI transfor-
mation rule instance that suggests an integration template.
An integration template applies the same join points for inte-
gration rules. In both cases, pointcuts query the join points
to get an advices, either for the transformation or concerns
integration. We give an example of both rules later. The
integration template uses an aspect language for concern in-
tegration but at the same time uses the target UI language.
The layout integration is the last part of the adaptation
mechanism. It is similar to the integration template in that
it uses a DSL language from the target domain language to
describe the layout and an extra markup to locate specific
or anonymous fields in the template.

In order to an a new concern to the system, we either need to
expose it to the READ context, or to extend the data struc-
ture through new annotations. This way the novel concern
becomes accessible by EL, thus by both the transformation
or integration rules.

4.2 READ lifecycle
Next, we briefly look at the READ lifecycle in Figure 3 that
denotes the main stages (a-f). In the UI, we aim to display
a given data instance (a) in the target UI language. In order
to do that, we use a custom component that is associated
with a specific component handler (b,c) and the displayed
data instance reference. The responsibility of such a handler
is to provide the content for the component. Thus this han-
dler is the connection between the target UI language and
integration of our approach. The custom component takes
as an input the data instance and considers other context
information. For instance, the context can be an indication
that the aimed content is a read-only presentation, fields
named “notes” are ignored, etc. First, the handler aims to
get the data structure, the data structural model. Either,
this structural model is found in the cache from a previous
use or the data instance goes through an MP inspection (d)
and the result is passed to the cache. A cloned instance of
the structural model, which is the result of the inspection
(d1), is interpreted in a given context using the Annota-
tion Driver Participant Pattern (ADPP). This may result in
modification of the structural model. Such a context-aware
structural model is then passed to the transformation phase
(e) together with the context. In the above sections, we
mentioned three phases of transformation. Each data field
from the context-aware structural model of given data is
the subject of transformation and concern integration (e1*).
This results in a UI code representation in the target UI
language for each field. After all fields process the layout is
integrated (e21) receiving the entire data UI representation
as result. The last stage interprets the resulting UI fragment
and integrates it to the UI (f).

4.2.1 READ UI integration
Consider the process of designing a web page where we want
to display application data in the main panel. Normally,
such a main panel contains code similar to Listing 1 to de-
scribe the data. Instead a custom component is used as
shown in Listing 2. A component prefixed “af” takes as an
attribute a reference to a data instance accessible through
a controller (in our case called a bean and a local con-

READ
handler

READ
component

Page
renderer

Inspection

Structural-model

Context-aware
structural-model

Transformation

Transformation
rules

Integration
rules

DSL UI
code fragment

Fo
r e

ac
h

fie
ld

Layout
integration

DSL UI
Code fragment

Code runtime
integration

READ

..
..

..

..
..

..
..

..
..

..
..

.. ..
..

a b c

d

d
1

e f

e
11

e
12

e
21

Figure 3. READ lifecycle

Listing 2. Example use of READ UI component
<h:outputText value=" Person Info Form" />
<af:ui instance ="#{bean.instance.personInfo}"

layout ="personInfo -wide -layout"
edit="true" ignore ="password ,notes" />

<h:commandButton action ="#{bean.save}" value="save"/>� �
text). This component is associated with custom handler
that pushes the local context to be considered in the READ
context and issues the phases described in Section 4.2 to
receive the CUI for the given data instance.

4.2.2 Inspection phase
The inspection phase is rather complex; thus we provide
more details. It audits classes of the data-model (entities).
It specifically looks for class name, class restrictions, its
fields and field constraints. While aiming to build on ex-
isting industry standards, we look into the following profiles
for persistence and input validation. Java EE considers Java
Persistence API data-model profile [10] to support object-
relational mapping and Java Beans Validation [2] to validate
input of the persistent objects. Both of these standards are
applied to existing systems, and we consider them in the
inspection. Model-based profiles reflecting the above data-
model extensions were introduced in [8]. The same approach
can be further extended for role-based access control and
for presentation [8]. Table 3 shows the class structure and
field elements and a subset of selected extensions applica-
ble to data-model class fields. The table describes extension
names, denotes their applicability and also highlights the
name of a variable under which it is accessible as a join point.
The inspection phase considers all such extensions and it is
further possible to consider other custom ones. The result of
the inspection is a structural model, a three-level composite
structure reflecting the class-level, field-level constrains or
extensions. The structural model provides these properties
through the variable name (the right most column in Ta-
ble 3). Furthermore, in this phase, it is possible to apply
runtime context to modify the structural model. For exam-
ple, it is possible to locally modify structural model fields
based on a given condition such as ignore a field, change
field constraints or to expose a new variable/object in the
context and make it available as a join point.

Table 3. Subset structural model elements accessible
as join points

Extension Description Data
type

Context variable

Class-level attributes
- class name - entity, Entity
- full class name - fullClassName
Field-level attributes
- field name - field, Field
- field type - dataType
Field-level constraints
1. Persistence profile
Column DB table column props. Any notNull,required,

maxLength,unique..
joinColumn DB table column props. Any notNull,required,

unique..
Temporal Date, Time, TimeStamp Date temporal

..

2. Validation profile
Length Value length in the range String minLength,

maxLength
Min, Max Value in the range Number min, max
Email Match email String email
Pattern Matches the reg-exp String pattern
Future, Past Future/Past date Date past, future
NotNull Not null value Any required,notNull
NotEmpty Not empty value Any required,notEmpty

..

3. Presentation profile
UiLink Web link expected String link
UiText Long text expected String text, cols, rows
UiParam Any Param expected Any param

(name, value)
UiHtml Html expected String html
UiPassword Secret text expected String password
UiType Type of widget to use Any type
UiOrder Order in view Any order
UiTableOrderOrder in table Any tableOrder
UiIgnore Ignore field in UI Any ignore
UiPattern UI Script regular expr String uiPattern
UiProfiles To support grouping Any Profiles

..
4. Access control profile
Restrict Third parti restriction Any restrict
UiUserRoles Values specifies user role Any roles

..

4.2.3 Transformation phase
The transformation phase consists of three parts. This sec-
tion provides details to build the whole picture. We have in-
troduced how to apply a READ component to the UI DSL,
how to receive the data instance, and process the inspec-
tion. The result of this is a context-aware structural-model
of the data instance. Such a structural model is accessi-
ble to the transformation through a EL context using vari-
ables described in Table 3. The application context and any
third-party elements or properties specified together with
the READ component or in its handler are passed to the
EL context. For example, consider the entity described in
Listing 3 (it uses annotations [10] and [2]) and context spec-
ified in Listing 2. The structural model reflects information
about the data, its fields and field properties. The settings
in Listing 2 modify the model instance, and in our case fields
password and notes are ignored. It also exposes the aim to
edit the data to the context, as well as specific layout to use
for this particular UI page.

The first stage applies transformation rules to data struc-
tural model fields. An example of a subset of such rules
captured in a DSL is shown in Listing 4. Consider the first

name field from the Listing 3. Based on the type, we use the
String group of the rules, and since none of the rule pointcuts
(expr attribute) apply, we use a default advice a textTem-
plate. For email, we pick a emailTemplate since the second
pointcut applies. The pointcut could use any variable avail-
able in EL context (consider context variables in Table 3
from the structural model, or any variable exposed to the
component handler). For example, we could ask whether a
field of type String is short and required and whether it is
Monday and user is from Prague. Such pointcut would look
like this:

maxLength<100 and required
and timeUtil.getDayName() eq ’Monday’
and locationUtil.city.toLowerCase() eq ’Prague’

Each field from the structural model of the given data in-
stance gets advice from the transformation rules. The advice
is a DSL template that describes a basic presentation in the
target UI language, with integration rules to integrate var-
ious concerns, such as binding, help, validation, etc. An
example template is shown in Listing 5. Note that this tem-
plate consists of many references to the structural model
through the context variables. These references are part of
the integration rules. In order to understand the mechanism,
we show three variants of integration rules in Listing 6. It
shows (a)-full/ (b)-brief/ (c)-shorten version of integration
rules. It integrates join points from a given field. The full
version separates the pointcut and advice part; when the
pointcut evaluates to true, then the body applies. Brief
version provides the same result but needs less code. The
shorten version fits to common cases and needs the least
code.

The last phase is layout integration. Layout is given by the
READ component or deduced dynamically using the han-
dler. This process is similar to XSLT, but it can express
anonymous fields and iterate over repeating layout pattern.
Consider Listing 7 that shows an HTML table decorating
data fields. The layout has a repeating code pattern of two
columns for anonymous fields with up to 100 iterations, and
a reference to an explicit field called notes that spans over
two columns in the last row. If fewer fields exist than speci-
fied, only the given amount applies. The specific fields take
precedence in resolution. The result is a CUI code fragment
that the READ handler integrates to the UI.

4.3 Design with READ
Next, we discuss software design with the use of READ. As-
suming that we build on the top of an enterprise architecture
using 3-layers, the system has a persistence layer that cap-
tures its data-model by classes and applies object-relational
mapping (ORM). For example Java EE defines standards
[10] for the ORM, which extends the class model with addi-
tional markup. Similarly validation [2] can be added. Gen-
eralization of such extensions and further enhancements are
suggested by [8]. READ inspection uses all of this informa-
tion for the structural model composition and for join points.
Besides the data model, READ can also integrate business
rules defined in the above layer. Preliminary work in [6]
shows that business rules can be inspected and their defini-
tions reused. This can be integrated into the READ context.

Listing 3. Example entity with additional markup
@Entity @Table(name = "personInfo ")
public class PersonInfo {

...
@UiU serRoles ({" Admin","Owner "})
@UiOrder(1) @Enumerated(EnumType.STRING)
public Title getTit le() { return title; }

@UiOrder(2) @NotEmpty @Email
@Length(max =100) @Column(nullable=false , length =100)
public String getEmail () { return email; }

@UiOrder (3) @NotEmpty @Pattern(regex ="^[^\\s].*")
@Length(max =100) @Column(nullable=false , length =100)
public String getFirstNa me() { return firstName; }

@UiOrder(8) @UiProfi les({"US"})
@NotEmpty @Column(nullable = false)
public String getHomeState() { return state; }

}� �
Listing 4. Example transformation rules

<mapping >
<type >String </type >
<default tag=" textTemplate" size ="20"

javaPattern ="" minLength ="0" maxLength ="255" />
<var name="Person.username" tag=" emailTemplate"/>
<cond expr="${email == true}" tag=" emailTemplate"/>
<cond expr="${link == true}" tag="linkTemplate"/>
<cond expr="${maxLength >255}"tag=" textAreaTemplate"/>

</mapping >� �
Listing 5. Example template for inputText widget
<x:inputText id="#{ prefix}$field$"

label ="#{ text[‘$entity$.$field$ ‘]}"
edit ="#{ empty edit$Field$? edit : edit$Field$}"

value ="#{ instance.$field$}" size="$size$"
required ="$required$" pattern ="$pattern$"

minlength ="$minLength$" maxlength ="$maxLength$"
title ="#{ text[‘title.$entity$.$field$ ‘]}"

rendered ="#{ empty render$Field$
? ’true’ : render$Field$}"/>� �

Considering common development approaches, we only ex-
pect data-model entity extension. We refer to such extended
entities as rich entities. In the presentation layer, common
components can be used together with READ components.
READ components take as attributes an entity instance and
addition presentation directives and build the presentation
for given instance. Such a component can produce a form,
table or a report. With READ, the developer does not de-
sign a form or a table directly per each page use. Instead, the
developer specifies transformation rules that generalize map-
ping among entity fields and presentation widgets. Transfor-
mation rules are generic and can be reused among projects.
The developer then designs integration templates that are
used by the READ weaver (component). These templates
are also generic and can be reused. While developing such
templates is time-consuming, we must consider that all these
templates are reused by the entire application, thus the ini-
tial work amortizes over the size of the software application.
Furthermore, developers can design specialized or generic
layout templates.

Where can we see the main benefits? First of all, the system
presentation reflects the actual state of the software system.
All data definitions, runtime contexts, and states are con-
sidered in the weaving process, thus the data presentation
reflects or adapts to it at runtime. Second, with READ, the
size of concern space does not increase the complexity of the
system, and described concerns can be reused. Change of

Listing 6. Pointcut strategies for templates
(a) $not empty minlength ; myVar = minlength $

minlength ="$myVar$"
$$

//-------
(b) $not empty minlength

? "minlength =\"". concat(minlength). concat ("\"")
: "" $

//-------
(c) minlength ="$minlength$"� �

Listing 7. Example layout template
<table class=" classLayout">
<af:iteration -part maxOccurs ="100">
<tr><td>$af:next$</td><td>$af:next$</td></tr>

</af:iteration -part>
<tr><td colspan ="2" class="foot">$af:notes$</td></tr>

</table>� �
an individual concern is easy to locate and modify. Third,
READ reduces errors because the entity becomes a single
focal point of information, thus we do not need to restate
information multiple times in the UI. Fourth, READ reduces
development and maintenance efforts since a new entity pre-
sentation does not require any coding. In case a new presen-
tation is needed for a given field, it is possible to define new
transformation rule or design a new template. Fifth, READ
naturally supports adaptive UI design because it evaluates
conditions at runtime and separates concerns. Sixth, READ
is open for integration with third party frameworks through
the context or data-model extensions. READ templates can
integrate any DSL. A more concrete example to this is when
we use Java EE and JSF for presentation; it is possible to
make templates for various component providers (such as
PrimeFaces, RichFaces, Tomahawk, etc.). Seventh, READ
does not bind the developer to a single-use approach; alter-
native approaches can be applied at the same time.

READ can integrate any new concerns in its context and can
evaluate them at runtime. Our current approach is evalu-
ated on component-based UIs, although it is not limited to
them. The limiting factor can be the runtime integration of
READ output to the UI. In some frameworks, this could be
complicated, as it requires access to low-level UI compiler
libraries. READ does not limit the expressiveness of the
UI since designer can adjust the presentation in composi-
tion templates. READ can be used with partially rendered
pages and AJAX rendered views.

5. EVALUATION
In this section, we provide an evaluation of our approach.
First, we consider a UI that provides a single presentation
and compare the manual approach with READ. Next we
consider UI extensions to support adaptive features such as
adjustments to access rights, users location, age, capabilities
or screen size. In this evaluation, we compare the develop-
ment costs for both approaches. We also consider a few
maintenance scenarios. In the second part of the evalua-
tion, we consider runtime performance. Third, we evaluate
an existing production system that uses READ and provide
our evaluation statistics. In the evaluation, we consider an
existing application, which is a registration system for the
worldwide competitions, the ACM-ICPC registration system
(available at http://icpc.baylor.edu)

Person

 String :password
 String :username

PersonInfo

 String :firstName
 String :lastName
 ..(other 16 attributes)..

ContactInfo

 String :voice
 String :im
 String :imService

ExtendedContactInfo

 String :fax
 String :phone
 ..(other 3 attributes)..

 Degree

 Date:beganDegree
 String :field
 . .(other 3 attributes)..

PassportInfo

 String :name
 String :nationality
 ..(other 4 attributes)..

Address

 String :street
 String :city
 ..(other 4 attributes)..

1
1

1
1

1 1

1 1 1
1

1
1

Figure 4. Evaluated application data-model «

Age student
Mood
Screen size * small
Country Czech Republic
Country code US
City

Region

Postal code

Date pattern M/d/yy

IP

DetectUpdate

Config

Email

Name

State

Country
Begun studies (M/d/yy)

Notes

Menu: Person List New Person signed in as: admin Logout

Login

ReRender Save Cancel
aa

Powered by JFormBuilder

Figure 5. Sample simple UI Form

5.1 Development and maintenance impact
In this section, we consider a subsystem of an existing ACM-
ICPC system used for the registration of users and user
account management. The considered subsystem has the
data-model illustrated in Figure 4. For brevity, the class at-
tributes are abbreviated, and the class model does not list
all attributes. The application follows mainstream devel-
opment with 3-layer Java EE. The lowest layer consists of
an object data-model with 7 entities with persistence and
validation constraints markup [2, 10]. The business layer
contains controllers with business logic, CRUD and search
functionality. The presentation layer contains UI implemen-
tation using JSF technology (no type-safety).

First, we consider this application with a single UI. The
UI part of the application contains search with result list-
ing plus a detail and modification page. The presentation
covers the entire data-model in Figure 4. Illustration of a
page fragment, a form, is shown in Figure 5. Form sub-
mission of data is validated through enforced business con-
straints upon the submission. The application provides a
single data presentation in one layout. In total there are
7 data classes and 46 fields presented in the UI. Excluding
development configuration and external libraries, the appli-
cation consist of 1342 physical lines of code (LOC) of Java,
including persistence and business logic, 2221 LOC of XML
presentation, and 373 LOC of XML of application configu-
ration. The type-unsafe XML presentation exhibits 564 oc-
currences of restated information from the data-model and
its constraints [2, 10]. Next, we implement the same applica-
tion using READ. The data instance source code is extended
with additional presentation marks [8] extending the field

Table 4. Efforts comparison

User interface Simple features Adaptive features
Approach Man. READ reuse Man. READ reuse

Java LOC 1342 1530 1439 1658 1907 1754
UI XML LOC 2221 1715 1534 13072 5036 4508

Conf. XML LOC 373 442 373 373 649 373
Restated inf. 564 0 0 6768 0 0

UI Conditionals 0 0 0 240 20 20

constraints (see example in Listing 3). The main difference
is that READ composes components presenting data. They
combine information from data instance inspection, trans-
formation rules and presentation/layout templates. None of
the stages involve a direct reference to a particular data field,
which leads to 0 occurrences of restated information in XML.
This results in 1530 LOC of Java, including the additional
data-model marks and a UI handler and 1715 LOC of XML
including templates and transformation rules. This shows
reasonable code reduction for the presentation part, but at
the same time we must consider the maintenance impact. In
the manual approach, we are directly responsible for restat-
ing information from data model in the UI, where READ
handles this for us. With READ we avoid inconsistency and
errors, while reducing development time. Even greater code
reduction effect can be achieved on larger projects. Note
that presentation templates and transformation rules can
be reused among projects. In this case, the READ appli-
cation results in 1439 Java LOC and 1534 XML LOC and
equal configuration. The summary can be found in the first
part of Table 4 (denoted by simple features). The aspect
weaver itself is not included in the evaluation because it is
a generic, reusable and external library (reasoning in [16]).

One serious drawback of this application example is that it
considers a superset of all possible end users. Thus users
with large screen are provided narrow layout, elderly might
need to zoom the page, internationals might wonder why
they need to fill in a state, and non-student registrants need
to provide student-specific information.

Next, we consider a more user-friendly presentation support-
ing adaptability. It provides end-users with a presentation
related to their origin using IP geo-location, adjusting to
their browsing device screen size, conforming user rights,
and fitting user age and capabilities. In total, there are 3
main layouts to conform the screen-size, although multiple
data elements follow a custom field order among different
layouts. Furthermore, we provide 4 different presentations
for children, elderly, adult and experienced users, all possi-
bly combining a given layout (see UI examples in Figs. 6-8).

The application following the mainstream development ap-
plies field restrictions, such as user rights or locations aware-
ness, throughout conditionals added to the presentation com-
ponents. The problem with this approach is that markup
languages have limitations in separating layout from the pre-
sentation. But also presentation cannot be separated from
field binding and property settings. The mainstream ap-
proach results with 1658 LOC of Java and 13072 LOC of
XML presentation, which includes 240 UI conditionals and
6768 restated information from the data-model. Consider
that with this approach, developers follow the implementa-
tion in Figure 2 (b).

«

Age student

Select

Mood confused

Select

Screen size * normal

Select required

Country Czech Republic

Fill in text mininum 0 letters maximum
255 letters

Country code CZ

Fill in text mininum 0 letters maximum
255 letters

City

Region

Postal code

Date pattern M/d/yy

IP 178.248.252.218

Fill in text mininum 0 letters maximum
255 letters

DetectUpdate

Config

Email

Fill in text mininum 0 letters maximum
255 letters it must be an email

Name

Fill in text mininum 0 letters maximum
255 letters

Country

Select

Begun studies (M/d/yy)

Fill in date must be future must be past

Menu: Person List New Person Login

Login

ReRender Save Cancel

aa

Powered by JFormBuilder

Figure 6. Sample form for confused student »Config

Fill in your email

Fill in your name

Select country you are from

Menu: Person List New Person Login

Login

ReRender Save Cancel
aa

Powered by JFormBuilder

Figure 7. Sample form for child »Config

Fill in your email

Fill in text mininum 0 letters
maximum 255 letters it
must be an email

Fill in your name

Fill in text mininum 0 letters
maximum 255 letters

Fill in state you are from

Fill in text mininum 0 letters
maximum 255 letters

Select country you are from

Select

Menu: Person List New Person Login

Login

ReRender Save Cancel
aa

Powered by JFormBuilder

Figure 8. Sample form for elderly

The READ approach allows designers separation of presen-
tation, layout and also of security and location-awareness
through various stages within the framework. One of main
differences in our approach is that each concern is imple-
mented separately as demonstrated in Figure 2 (a). The
READ weaver combines these together. In our study, the
application backend Java code includes 1907 LOC, the pre-
sentation XML reduces to 5036 LOC, including the presen-
tation and layout templates, and 649 LOC of configuration
XML. Conditionals for location and user-right restrictions
are captured in the data-model, which reduces them to 20.
Furthermore there are no occurrences of restated informa-
tion in the XML, although field names can be explicitly cap-
tured as attributes the UI component Listing 2 to ignoring
specified fields. The overall summary of the evaluation is
provided in Table 4. Consider that in this second example,
individual concerns multiply and their combinations apply.
Standard approaches fail to effectively design reusable UI
components. The reason is behind the common approaches
that fail to capture individual concerns separately, which
worsen the code readability, reuse and maintenance. Un-
tangling individual concerns through the AOP approach ad-
dresses code readability, reuse and maintenance more effec-
tively.

Next, we evaluate basic maintenance scenarios. With man-
ual development, the UI is fragile because of its coupling to
the data-model in the environment with type safety. Changes
to a data field, its name or constraints causes inconsistency
in all its UI fragments. Such a simple change may lead to
12 locations that need to reflect the change. In type-safe
code, this can be easily refactored, but in XML it must be
addressed by text search. With READ approach, there are
fewer UI references to the data elements; thus it does not
require many UI corrections. When we want to globally

Table 5. Performance comparison

Avg. page load time Std. deviation
Manual approach 545ms 47
READ approach 539ms 41

change the presentation of a particular widget, in the man-
ual approach all widget occurrences must change; however,
with READ such change takes place solely in a template.
Changes to user rights manually require to application of
conditionals in the UI or at controllers. Since multiple pre-
sentations exist for a single field, this can impact a signifi-
cant amount of UI code. In READ, such change takes place
at controllers and then only one time in the data-model, in
a single location. The addition of a new form layout may
require a new copy of the form with tangled layout, in the
common approach. In READ, the layout is a separate frag-
ment, thus only a new layout template is designed.

For the performance evaluation, we consider 5 forms with
total of 21 fields. We evaluate the time needed for the page
to render using both the manual and READ approach as
shown in Table 5. The load times for a page containing the
forms, averaged over 250 samples were 545ms (std. dev. 47)
for manual approach and 539ms (std. dev. 41) for READ.
The measurement shows that the page load time is similar
for both approaches.

5.2 Case Study : Production Experience
In order to demonstrate a large scenario, we provide a study
that applies the READ framework in production use. The
entire user registration and contest management system de-
scribed in Section 5 is used. The goal of this study is to
show applicability of READ to production environment, its
impact on development and maintenance, statistics resulting
from the approach, and generalization of its impact.

A subset of this system is evaluated in Section 5.1, using a
prototype applying various adaptive features. In the produc-
tion system we only consider single presentation and mul-
tiple screen layouts. The entire application is complex and
builds on a large data-model (70 data entities). UI devel-
opment and maintenance makes up a significant portion of
the overall development effort. Recently, the application mi-
grated to a new version that includes changes of the presen-
tation framework. Thus we changed all the UI components
in the entire application. Since both versions apply READ
for the UI forms, only a few changes were required to support
new form components. For the entire application, only 25 in-
tegration templates existed; these were reused for all forms
in the application. Changes to support new form widgets
took place in these templates. There were no changes needed
for the other concerns (e.g., layout templates, or transforma-
tion rules). This migration was done in a very short time,
compare to what it would be in the manual case. If had
used the manual approach, each form would combine multi-
ple concerns and thus the change would impact up to 21451
LOC of XHTML. Instead with READ, we could solely focus
on a single concern (a presentation), which is a change in the
UI templates, and this impacts only 288 LOC. While port-
ing forms required little time and effort, the migration of the
UI tables, which did not apply our READ approach, took

Table 6. Case study summary

Application

Java 77394 LOC
XML 2380 LOC
XHTML 41473 LOC
Generated UI equiv. to 21451 LOC (XHTML)

Estimate Savings on restated inf. in UI 15592

UI
Data entities 63 (70 total in the application)
Data fields 473

Average

Entity 7.5 fields
Entity in UI 82.5 restated inf. per UI form
Entity in UI 113 LOC and layout
Field in UI 15 LOC

considerably longer because it entangled multiple concerns
that were reused in many locations.

Our code measurement in the production system provides
the following results. Out of the 70 entities in the data-
model, 63 of them are referenced in the UI as forms. All
of these forms are generated at runtime based on data in-
spection. These forms are rendered in three different layout
widths according to the user’s screen size. In order to apply
the READ approach, we must define 28 transformation rules
(only 101 LOC), integration templates for UI components
(288 LOC) and layout templates (367 LOC). We also need
to apply additional 545 annotations to the Java classes. The
view part of the application, including XHTML and XML,
consists of 41473 LOC and 2380 LOC. The entire Java code
has 77394 LOC. The approach brings the reduction in UI
forms for 63 entities in three different layouts, which rep-
resents up to 21451 LOC of XHTML code. This represents
approximately 32% of the entire UI code for the application.

The following is the summary on these measurements. There
are 63 entities, with total 473 fields, that are represented in
the UI. Each field may have multiple constraints defined by
field annotations for object-relational mapping, validation,
security or presentation (see Listing 3). This represents 9-13
references per field in the UI component (see the Listing 5);
the exact number depends on a particular widget type and
the field. We also measure the average number of fields
in the UI form per a given entity. The result shows that
our system has the mean value 7.5 fields per entity (median
6) with a standard deviation of 4.85. When counting that
an UI widget has approximately 11 references to the data-
model, it results in 82.5 occurrences of restated information
in the XHTML per the average data entity in a single layout
form. Consequently, READ prevented an estimated 15592
occurrences of restated information in the application UI.
The measured statistics to render data entity in a UI form
in a single layout results in 113 LOC with standard deviation
63.77. This is caused by the deviation of class fields. Thus
each time we use READ in the UI we save around 113 LOC.
On average this represents 15 LOC for an individual field in
UI for a single layout.

The measurements are summarized in Table 6; it shows that
the use of READ framework reduces the amount of UI code.
Significant portion of the UI code is generated. Doing this
manually require us to handle significant coupling and many
occurrences of restated information; therefore, future evolu-
tion management would result in high maintenance efforts.

Table 6 gives our estimate on an average entity its field
count, UI references, and LOC required for UI presentation
with contemporary approach. The project statistics shows
that the UI part of the system is significant, which confirms
the estimate from [14]. Regarding the performance, there is
no performance reduction exhibited and the community has
reported no performance issue. The broader variety of adap-
tivity of the system to the international audience is currently
under development.

6. CONCLUSION
Despite many benefits of CUIs, few production systems sup-
port employing them. The reasons behind this include the
excessive cost of CUI development and maintenance as shown
in our case study. We provide an approach that considers ex-
isting standards for application frameworks, aspect-oriented
programming and employs code-inspection to face the com-
plexity and efforts related to CUI design. Our READ tech-
nique considerably reduces the cost involved in the develop-
ment of CUIs. While time-consuming to initially develop,
all the work related to templates and transformation rules
amortizes over the size of the software application. Our ap-
proach is implemented in a production-level library, called
AspectFaces. It is currently used in production at the ACM-
ICPC system.

In the future, we plan to generalize our approach to inspect
and reuse application business rules. Our preliminary results
show that such an approach will provide more options and
variety of adaptivity and further code-reduction for business
rules-aware UI.

7. ACKNOWLEDGMENTS
This research was supported by the Grant Agency of the
Czech Technical University in Prague, grant No. SGS12/
147/OHK3/2T/13.

8. REFERENCES
[1] Java Unified Expression Language, Aug. 2013.

http://juel.sourceforge.net.

[2] E. Bernard. JSR 303: Bean validation, Nov. 2009.

[3] A. Blouin, B. Morin, O. Beaudoux, G. Nain,
P. Albers, and J.-M. Jézéquel. Combining
aspect-oriented modeling with property-based
reasoning to improve user interface adaptation. In
Proceedings of the 3rd ACM SIGCHI symposium on
Engineering interactive computing systems, EICS ’11,
pages 85–94, New York, NY, USA, 2011. ACM.

[4] M. Blumendorf, G. Lehmann, and S. Albayrak.
Bridging models and systems at runtime to build
adaptive user interfaces. In Proceedings of the 2nd
ACM SIGCHI symposium on Engineering interactive
computing systems, EICS ’10, pages 9–18, New York,
NY, USA, 2010. ACM.

[5] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-oriented software
architecture: a system of patterns. John Wiley & Sons,
Inc., New York, NY, USA, 1996.

[6] K. Cemus and T. Cerny. Aspect-driven design of
information systems. In SOFSEM 2014: Theory and
Practice of Computer Science, Lecture Notes in
Computer Science. Springer Berlin Heidelberg, Novy
Smokovec, High Tatras, Slovakia, 25, January 2014.

[7] T. Cerny, V. Chalupa, and M. Donahoo. Towards
smart user interface design. In Information Science
and Applications (ICISA), 2012 International
Conference on, pages 1 –6, may 2012.

[8] T. Cerny and E. Song. Model-driven Rich Form
Generation. Information: An International
Interdisciplinary Journal, 15(7, SI):2695–2714, JUL
2012.

[9] K. Czarnecki and U. W. Eisenecker. Generative
programming: methods, tools, and applications. ACM
Press/Addison-Wesley Publishing Co., New York, NY,
USA, 2000.

[10] L. DeMichiel. JSR 317: JavaTM persistence API,
version 2.0, November 2009.

[11] E. W. Dijkstra. A Discipline of Programming.
Prentice Hall, Inc., Oct. 1976.

[12] I. R. Forman and N. Forman. Java Reflection in
Action (In Action series). Manning Publications Co.,
Greenwich, CT, USA, 2004.

[13] M. Karu. A textual domain specific language for user
interface modelling. In T. Sobh and K. Elleithy,
editors, Emerging Trends in Computing, Informatics,
Systems Sciences, and Engineering, volume 151 of
Lecture Notes in Electrical Engineering, pages
985–996. Springer New York, 2013.

[14] R. Kennard and J. Leaney. Towards a general purpose
architecture for ui generation. Journal of Systems and
Software, 83(10):1896 – 1906, 2010.

[15] R. Kennard and S. Robert. Application of software
mining to automatic user interface generation. In
SoMeT’08, pages 244–254, 2008.

[16] G. Kiczales, J. Irwin, J. Lamping, J.-M. Loingtier,
C. V. Lopes, C. Maeda, and A. Mendhekar.
Aspect-oriented programming. In In
ECOOP’97-Object-Oriented Programming, 11th
European Conference, volume 1241, pages 220–242.
Springer, June 1997.

[17] A. G. Kleppe, J. Warmer, and W. Bast. MDA
Explained: The Model Driven Architecture: Practice
and Promise. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2003.

[18] R. Laddad. AspectJ in Action: Enterprise AOP with
Spring Applications. Manning Publications Co.,
Greenwich, CT, USA, 2nd edition, 2009.

[19] Q. Limbourg, J. Vanderdonckt, B. Michotte,
L. Bouillon, and V. López-Jaquero. USIXML: A
Language Supporting Multi-path Development of User
Interfaces Engineering Human Computer Interaction
and Interactive Systems. volume 3425 of Lecture Notes
in Computer Science, chapter 12, pages 134–135.
Springer Berlin / Heidelberg, Berlin, Heidelberg, 2005.

[20] V. López-Jaquero, F. Montero, and F. Real. Designing
user interface adaptation rules with t: Xml. In
Proceedings of the 14th international conference on

Intelligent user interfaces, IUI ’09, pages 383–388,
New York, NY, USA, 2009. ACM.

[21] M. Macik, T. Cerny, J. Basek, and P. Slavik.
Platform-aware rich-form generation for adaptive
systems through code-inspection. In Human Factors in
Computing and Informatics, pages 768–784. Springer
Berlin Heidelberg, 2013.

[22] M. Macik, M. Klima, and P. Slavik. Ui generation for
data visualisation in heterogenous environment. In
Proceedings of the 7th international conference on
Advances in visual computing - Volume Part II,
ISVC’11, pages 647–658, Berlin, Heidelberg, 2011.
Springer-Verlag.

[23] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344, Dec. 2005.

[24] G. Mori, F. Paterno, and C. Santoro. Design and
development of multidevice user interfaces through
multiple logical descriptions. IEEE Trans. Softw.
Eng., 30(8):507–520, Aug. 2004.

[25] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and
A. Solberg. Models@ run.time to support dynamic
adaptation. Computer, 42(10):44–51, Oct. 2009.

[26] J.-M. Oh, Y. S. Lee, and N. Moon. Towards cultural
user interface generator principles. In Proceedings of
the 2011 Fifth FTRA International Conference on
Multimedia and Ubiquitous Engineering, MUE ’11,
pages 143–148, Washington, DC, USA, 2011. IEEE
Computer Society.

[27] M. Schlee and J. Vanderdonckt. Generative
programming of graphical user interfaces. In
Proceedings of the working conference on Advanced
visual interfaces, AVI ’04, pages 403–406, New York,
NY, USA, 2004. ACM.

[28] V. Schwartze, S. Feuerstack, and S. Albayrak.
Behavior-sensitive user interfaces for smart
environments. In Proceedings of the 2nd International
Conference on Digital Human Modeling: Held as Part
of HCI International 2009, ICDHM ’09, pages
305–314, Berlin, Heidelberg, 2009. Springer-Verlag.

[29] J.-S. Sottet, G. Calvary, J. Coutaz, and J.-M. Favre. A
model-driven engineering approach for the usability of
plastic user interfaces. In Engineering Interactive
Systems, pages 140–157. Springer, 2008.

[30] J.-S. Sottet, G. Calvary, and J.-M. Favre. Models at
runtime for sustaining user interface plasticity. In
Models@ run. time workshop (in conjunction with
MoDELS/UML 2006 conference), 2006.

[31] C. Stephanidis, A. Paramythis, D. Akoumianakis, and
M. Sfyrakis. Self-adapting web-based systems:
Towards universal accessibility. In Waern, editor, In
4th ERCIM Workshop on ”User Interfaces for All”,
1998.

[32] M. Stoerzer and S. Hanenberg. A classification of
pointcut language constructs. In Workshop on
Software-engineering Properties of Languages and
Aspect Technologies (SPLAT) held in conjunction with
AOSD, 2005.

ABOUT THE AUTHORS:

Tomas Cerny received his Bachelor's and Master's degrees from the Faculty of
Electrical Engineering at the Czech Technical University in Prague, and M.S. degree
from Baylor University. He is a Ph.D. student in Prague. His area of research is
software engineering, aspect-driven development, user interface design, enterprise
application development and networking.

Michael “Jeff” Donahoo received his B.S. and M.S. degrees from Baylor University,
and Ph.D. in the Computer Science from Georgia Institute of Technology. Jeff is
currently a Professor of Computer Science at Baylor University where he conducts
research on networking, security, and enterprise application development.

Eunjee Song is currently an Associate Professor in the Department of Computer
Science at Baylor University. Her main research interests include applying aspect-
oriented modeling (AOM) and model-driven engineering techniques to specifying
and analyzing complex systems. She received her Ph.D. and M.S. in Computer
Science degrees from Colorado State University in 2007 and 2001 respectively.
Prior to that, she worked for IBM Korea for more than five years after receiving her
B.S. in Computer Engineering and B.S. in Architecture degrees from Seoul National
University in Korea.

Karel Cemus is a Ph.D. student at Faculty of Electrical Engineering of Czech
Technical University in Prague, where he also received his Bachelor's and Master's
degree. His research focuses on enterprise information systems, their adaptivity,
efficient design and maintenance.

In Situ Affect Detection in Mobile Devices: A Multimodal
Approach for Advertisement Using Social Network

Mohammad
Adibuzzaman,
Niharika Jain

Math, Statistics and Computer
Science

Marquette University
Milwaukee, WI, USA

{mohammad.adibuzzaman,
niharika.jain}@marquette.edu

Nicholas Steinhafel
Computer Science

Marquette University
nsteinhafel@gmail.com

Munir Haque
Computer and Information

Sciences
University of Alabama

Birmingham, Alabama, USA
mhaque@uab.edu

Ferdaus Ahmed
Math, Statistics and Computer

Science
Marquette University
Milwaukee, WI, USA

ferdaus.ahmed@gmail.com

Sheikh Ahamed
Math, Statistics and Computer

Science
Marquette University
Milwaukee, WI, USA
iq@mscs.mu.edu

Richard Love
International Breast Cancer

Research Foundation
Madison, WI, USA

richard@ibcrf.org

ABSTRACT
Affect detection has been widely advocated to be implemented in a
natural environment. But due to constraints such as correct label-
ing and lack of usable sensors in natural environment most of the
research in multi-modal affect detection has been done in labora-
tory environment. In this paper, we investigate affect detection in
natural environment using sensors available in smart phones. We
use facial expression and energy expenditure of a person to classify
a person’s affective state by continuously recording accelerometer
data for energy and camera image for facial expression and mea-
sure the performance of the system. We have deployed our system
in a natural environment and have provided special attention on an-
notation for the training data to validate the ‘ground truth’. We have
found important relationship between valence and arousal space for
better accuracy of affect detection by using facial image and energy.
This validates Russell’s two dimensional theory of emotion using
arousal and valence space. In this paper, we have presented ini-
tial findings in multi-modal affect detection. Using the multimodal
technique, we propose a system that can be used in social networks
for affect sensitive advertisement.1

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine System; I.4 [Image
Processing and Computer Vision]: Feature Measurement

General Terms
Performance

Keywords
Algorithms, Experimentation, Human Factors

1. INTRODUCTION
1Copyright is held by the authors. This work is based on an earlier
work: RACS’13 Proceedings of the 2013 ACM Research in Adap-
tive and Convergent Systems, Copyright 2013 ACM 978-1-4503-
2348-2/13/10. http://doi.acm.org/10.1145/2513228.2513290.

Affective computing finds its application in several domains such
as advertising, robotics, health care, Human Computer Interaction
(HCI) and gaming [11]. The prior works in affective computing
follow a unimodal approach for affect detection, wherein a single
feature is used for affect recognition. This single feature could cor-
respond to facial expressions, speech, body gestures or physiologi-
cal features like heart rate, skin conductivity, blood pressure etc.

Human emotion is a multi-modal phenomenon. The emotional or
affective states such as happiness, sorrow, fear etc. experienced by
humans are usually characterized by changes in more than one fea-
ture. For example, an expression of happiness can be understood
from facial expressions and speech, or, anger can be evident from
speech, body movement or facial expressions. For an affect recog-
nition system to be more natural, reliable and accurate, using a mul-
timodal approach is better than a unimodal one. In the field of af-
fective computing, multimodal real time implementation is widely
advocated but rarely implemented [11]. Research has been done for
affect detection from facial expression, speech data, body gesture,
heart rate, skin conductance, pressure sensor and other inputs.

Facial expressions can be decoded by several means. One of the
most popular approaches, FACS (Facial Action Coding System)
proposed by Ekman [24], uses Action Units (AUs) to recognize
the facial expression. The focus of region based approaches is on
specific regions of the face like eyebrows, eyes and lips and hence
becomes a region specific approach. Facial features can also be rec-
ognized using pattern recognition approaches [17]. There are also
works for facial feature extraction using geometric features and ap-
pearance features [28].

Several research studies have demonstrated the use of machine learn-
ing techniques in understanding the patterns associated with phys-
iological activity in order to detect affect [29]. Fusion of the data
obtained from facial expressions and speech has been done to at-
tain benefits of multimodal approach. In another study, motion and
audio data from mobile-device was used to assess the mental and
physical well-being and a high correlation was found with gold-
standard survey metrics [20]. To the best of our knowledge, we

have found very few studies which include physical activity as one
of the modalities in affect detection [12].

Although, research using multimodal approach for affect detection
has gained popularity in the last decade [29], the use of hand-held
devices with in-built sensors in collecting information has been
rare. In a laboratory setting, a person is usually equipped with sev-
eral devices or medical equipment to collect relevant data. The use
of a single hand-held device, equipped with in-built sensors can
negate such need. Smartphone is one such example which has in-
built sensors such as camera, microphone, GPS and accelerometer.
These sensors can help collect useful information in relation to af-
fective states like facial expressions (from camera), speech (from
microphone), location (from GPS) etc. Likewise, accelerometer
data can be used to estimate the energy exerted by a person over a
period of time. It can be realized that the power of such hand-held
devices knows no bounds. Just like facial features, information
about energy expenditure can also give us affective cues. The pres-
ence of camera and accelerometer in the smartphones can hence
play a vital role in affect detection using mobile or hand-held de-
vices.

For multimodal affect detection, we used Naïve Bayes fusion tech-
nique to integrate the data from camera (facial expressions) and
accelerometer (physical activity). We evaluated and compared the
system performance for unimodal (only facial expression data) and
multimodal approaches for affect detection. It was found that the
multimodal system was significantly better than the unimodal sys-
tem.

We also build a Facebook application for detecting affective state
and which can be used for advertisement. The Facebook applica-
tion uses images of a person collected from smart phone and uses
eigenface for training and detection of facial expressions into six
basic emotional categories: anger, fear, happiness, disgust, sadness
and surprise.

1.1 Contributions
Decision making capabilities in humans are largely governed by
their emotions [3]. Hence, to understand human behavior, it be-
comes important to gain knowledge about affective states and their
recognition. In this paper, we present a system which uses the in-
built sensors of a smartphone to give information about affective
state of the user. The contributions of this research work are as
follows:

• We provide a natural setting for data collection without in-
terfering in daily routine of participants

• We claim that a multimodal (facial expressions and energy
expenditure) design provides more accuracy in affect recog-
nition as compared to unimodal (only facial expressions) de-
sign.

• The affect detection technology can be used for advertise-
ment in social network. We propose such a system and build
a prototype for affect aware advertisement.

2. STATE OF THE ART
Even though there has been lot of work in the area of affective
computing, it suffers from challenges and limitations [19]. Expres-
sion of emotion varies from person to person and is expressed in

numerous ways. It is difficult to incorporate each and every param-
eter in data collection and analyses. Moreover, the data is usually
collected in a laboratory environment which introduces the bias of
observation for the emotional expression. These lab settings are
devoid from the information corresponding to participantâĂŹs en-
vironment, nearby objects, location etc. which otherwise play a
crucial role in his/her affective state.

In an attempt to overcome some of these challenges, the data in this
study[8] was collected through several means. It included a mobile
phone journaling system, wireless sensors for measuring galvanic
skin response, heart rate and physical activity. These ’in situ’ rat-
ings were combined with contextual ratings provided by third-party
raters to increase the affect recognition rates. The data collected
from these different sources were then triangulated so as to achieve
a data set containing mutually agreeing information. This informa-
tion when fed to a J48 decision tree returned highly accurate results
(100% accuracy) in terms of high or low activation states.

For multimodal affect detection in natural settings, ’ground truth
data’ were collected through self-reports, and audio and physiolog-
ical data were collected through sensors [9]. Self-report helped in
the development of inference algorithms. It was observed that hav-
ing a customizable time window is important because of the usual
delay in annotating emotional experience. Having this feature def-
initely improved the accuracy of the affect recognition system. It
was also realized that using wireless sensors can be challenging be-
cause of positioning and connectivity issues.

The power of mobile devices has been further explored for af-
fect annotation by incorporating the multi-modal technique for as-
sessing physical as well as mental well-being [20]. A study was
conducted wherein the subjects were given a device consisting of
various sensors which could help collecting data required for the
above mentioned assessment. The classification of collected data
as speech and activity was done using two-state hidden Markov
Models (HMM) and decision-stump classifiers respectively. A cor-
relation between automated assessment of mental, and/or physical
health and the result of gold-standard surveys was found so as to
stress upon the accuracy of sensor-based measurements.

Healey et al. tries to standardize the affective data annotation in [8]
and [9]. But their approach used sensors not only that are available
in mobile devices, but also external sensors. Again, a comprehen-
sive study about the classification algorithm was not present. [20]
shows the correlation of gold standard surveys with sensor data
capture, but that does not provide a study only for mobile device.
The participants had to wear other sensor devices for affective data
annotation. In our study we overcome both of these problem by
using only one smart phone for the user. We also present a compar-
ative study of the result about multimodal versus unimodal system.
We also summarize a list of related works that use different modal-
ities for affect detection in Table 1. All of these works discussed
in this section provide the techniques and results of using different
modalities. But none of the research study uses only smart phones
for collecting data. Also, a comparative study between unimodal
system versus multimodal system was not present.

3. OUR APPROACH
To capture the arousal and valence space, we used facial expression
and energy exertion of a person. From the field of psychology,

Table 1. Summary of related works for different modalities

Multimodalities Features

Facial Features
(Eye, nose and
mouth) [2]

- Skin Detection Algorithm for identi-
fying the skin pixels

- Z-based erosion and standard erosion
algorithms for refining the pixels

- Range imagery to locate eyes, mouth
and nose

- Geometric-based confidence measure
to select the best feature group

Heart activity
and facial
expressions
[10]

- Augsburg Matlab toolbox for extract-
ing features from ECG signals

- eMotion software for extracting fea-
tures from facial expressions

- Chi-square feature selection algorithm
for selecting equal features from each
channel

- Feature-level fusion to append the se-
lected features KNN, SVM and Deci-
sion tree algorithms for classification
Vote classifier for average probability

Conversational
cues, body
language and
facial features
[4]

- F-ratio from a univariate ANOVA to
select equal features

- Feature-level fusion to merge the fea-
tures obtained from each channel

- Linear discriminant analyses to clas-
sify the data

Facial features
and speech [27]

- Nearest neighbor method to classify
video data

- HMM to classify audio data

- Rule-based algorithm for combining
the information

arousal space can be captured by heart rate, pupil size or energy
expenditure; all of them can be captured from the sensors available
in smart phones. In this paper, we used facial expression for valence
and energy expenditure for the arousal space. We used eigenface
algorithm for detecting facial expression and later used mean of
different affective states as the second feature for multimodal affect
detection using Naïve Bayes fusion. In this section we describe the
methods we used for the annotation of in situ affective data and the
reason for using facial expression and energy expenditure. In the
next section, we describe the details of our classifier.

3.1 Selecting Modalities
Emotion labeling is moderately less work in laboratory environ-
ment where the researcher can control the environment, recreate
the situation, recording can be done accurately and the person can
be interviewed for his/her annotations. However, the emotion la-
beling can still be flawed since in controlled environment people

might act differently, both physiologically and cognitively. In situ
capturing of affective state captures the natural data, but it needs
more methodical approach for emotion journaling. The participants
need to be trained well and the data labeled needs to be verified
later. Our goal is to minimize the error for establishing the ’ground
truth’, which defines true affective state for the given data in ma-
chine learning algorithm for classification.

Figure 1. Russell’s circumplex model of emotion [23].

According to the Russell’s circumplex model of emotion, each af-
fective state can be represented in 2D space [23]. The horizon-
tal axis represents the valence and the vertical axis represents the
arousal space. Valence represents how good or bad a person is feel-
ing, and arousal represents how much a person is aroused. There-
fore, we hypothesize that if we could capture the arousal space data
from accelerometer, we could better classify the affective states.
For example, for the happy state, this is a positive feeling and a
person might have some kind of excitement. On the other hand, for
sad feeling, it is a negative feeling and the person may have less
movement, which corresponds to less energy expenditure.

3.2 Emotion Journaling
We used smart phones for emotion journaling. Smart phones give
us the opportunity for labeling emotion as soon as it occurs with
real time sending and storage capability. Eight participants were
recruited for the study, aged between 21-33 all of whom are stu-
dents. Participants were asked to carry the smart phones and anno-
tate the data for at least 5 times a day for a seven day period. The
participants will be referred as PA in this work.

For the journaling of emotional data, we used camera and accelerom-
eter data of smart phones for facial expression and activity. Also
location data was stored using GPS of the smart phones that might
give us the context information. Three android phones were used,
two Droid X with android operating system of 2.2 and one Sam-
sung Galaxy Nexus with android operating system of 3. PAs were
asked to take a facial picture with the smart phones and then label
the data. The labeling was done using two sources for capturing
the natural feeling. One is using theMood-mapwhich corresponds
to Russell’s circumplex model and the other is radio button from

(a) (b)

Figure 2. Annotation of emotion data: (a) Annotation of affec-
tive state using Russell’s 2D emotional space. (b) Annotation of
affective state using radio button.

which the user can pick one from the six basic emotions. Figure
2 shows the interface for mood-map as well as the radio buttons.
Continuous and fine grained accelerometer data for fifteen minutes
before taking the picture and location data were also recorded and
then sent to the server using the phones’ internet.

3.3 Journaling Training
Each participant was asked to keep the smart phone for one week.
Before handing over the smart phone, they were trained on how
to use the application for emotional data annotation. During that
period, PAs were asked to carry the smart phones six to eight hours
a day and label the data whenever any emotional event occurred.
They were trained to use the touch based application as well as
how to take the picture, use the mood-map and upload the data.
Furthermore, there was constant communication between the PAs
and the researcher for any question from the participant.

3.4 Algorithm Design
The algorithm for affect detection from facial expression and ac-
celerometer data can be discussed in different components;face de-
tection, affective state from facial image, energy expenditure from
body movement and fusion using Naïve Bayes. Each of the com-
ponents are discussed here.

3.4.1 Face Detection
Pixels corresponding to skin are different from other pixels in an
image. [17] has shown the clustering of skin pixels in a specific
region for Skin color modelling in chromatic color space. Though
the skin color of persons vary widely based on different ethnicity,
research [24] shows that the still form a cluster in the chromatic
color space. After taking the image of the subject we first crop the
image and take only the head portion of the image. Then we use
skin color modeling for extracting the required facial portion from
the head image.

3.4.2 Affective State from Facial Image

For this part we use a combination of Eigenfaces, Eigeneyes, and
Eigenlips methods based on Principal Component Analysis (PCA)
[28][29]. This analysis method includes only the characteristic fea-
tures of the face corresponding to a specific facial expression and
leaves other features. This strategy reduces the amount of training
sample and helps us make our system computationally inexpensive
which is one of our prime goals. These resultant images are used
as samples for training Eigenfaces method and M Eigenfaces with
highest Eigenvalues. We generate the Eigenspace as follows:

• The first step is to obtain a set S with M face images. Each
image is transformed into a vector of sizeN2 and placed into
the set,S = γ1, γ2, γ3, ..., γM

• Second step is to obtain the mean imageψ

ψ =
1

M

M
∑

n=1

γn

• We find the differenceψ between the input imageφ and the
mean image,φi = γi − ψ

• Next we seek a set of M orthonormal vectors,µM , which
best describes the distribution of the data. Thekth vector,
µk, is chosen such that

ψ =
1

M

M
∑

n=1

(µT
k φn)

2

• λk is a maximum, subject to

µT
l µk =

{

1, if l == k.

0, otherwise.

whereµk andλk are the eigenvalues and eigenvectors of the
covariance matrixC.

• The covariance matrix C has been obtained in the following
manner

ψ =
1

M

M
∑

n=1

(φnφ
T
n)

2 = AAT

whereA = [φ1, φ2, φ3, ..., φm].

• To find eigenvectors from the covariance matrix is a huge
computational task. SinceM is far less thanN2 byN2, we
can construct theM byM matrix,

L = ATA

whereLmn = φT
mφn

• We find theM Eigenvectors,vl of L.These vectors(vl) de-
termine linear combinations of theM training set face im-
ages to form the Eigenfacesul.

µl =
M
∑

k=1

vlkφk

wherel = 1, 2, 3, ...,M

• After computing the Eigenvectors and Eigenvalues on the co-
variance matrix of the training images

– M eigenvectors are sorted by Eigenvalues

– Top eigenvectors represent Eigenspace

• Project each of the original images into Eigenspace to find a
vector of weights representing the contribution of each Eigen-
face to the reconstruction of the given image.

When detecting a new face, the facial image is projected in the
Eigenspace and the Euclidian distance between the new face and
all the faces in the Eigenspace is measured. The face that repre-
sents the closest distance will be considered as a match for the new
image. Similar process is followed for Eigenlips and Eigeneyes
methods. The mathematical steps are as follows:

• Any new image is projected into Eigenspace and we find the
face-key by
ωk = µT

k andωT = [ω1, ω2, ω3, ..., ωM]

where,uk is thekth eigenvector andωk is thekth weight in
the weight vectorωT = [ω1, ω2, ω3, ..., ωM]

• TheM weights represent the contribution of each respective
Eigenfaces. The vectorΩ, is taken as the ‘face-key’ for a
face’s image projected into Eigenspace.

• We compare any two ‘face-keys’ by a simple Euclidean dis-
tance measure

ε = ||Ωa − Ωb||
2

• An acceptance (the two face images match) or rejection (the
two images do not match) is determined by applying a thresh-
old.

3.4.3 Energy Expenditure from Body Movement
There exists a significant correlation between accelerometer data
and the work done by a person. It is found that the energy measured
by ADInstrument Exercise Phsyiology Kit is highly correlated with
accelerometer energy when the phone is positioned at the waist [5].

Droid X uses the STMicroelectronics LIS331DL accelerometer. In
our study, 2 Droid X 3G devices running Android OS 2.2 and one
Samsung Galaxy Nexus with Android OS 3 were used as accelera-
tion measurement platforms.

Since this is a piezo-resistive accelerometer, low pass filtering is
required to acquire the true activity-component. We applied low-
pass filtering on the raw accelerometer data, as its output includes
a DC gravitational contribution. In the literature, the ideal cut-off
frequency or the filter ranges from 0.1 Hz to 0.5 Hz. We used 0.5
Hz filter in Matlab to exclude the gravitational contribution. After
testing the varying frequency in this range, we found good result
preserving the activity contribution.
To correlate accelerometer data with energy expenditure of a per-
son, the accelerometer’s three dimensional vector needs to be sum-
marized as one scalar value that represents physical activity inten-
sity over small time periods [5]. This scalar value is considered
accelerometer energy spent by the user. To calculate accelerometer
energy, several different methods have been proposed, but the most
used one is the summation of time integrals of accelerometer out-
put over the three spatial axes [5]. We adopted this method. The
accelerometer energy is calculated according to the following for-
mula:
Accelerometer energy=

∫ t0+T

t0
|ax|+ |ay|+ |az|dt

Hereax,ay andaz are low-pass filtered accelerometer data cor-
responding to the x, y, and z axes. For calculating the values of
this equation, we found the accelerometer input data on each of the
axes. Then low pass filtering was used on each axis input. Next, we
calculated the absolute value of the accelerometer inputs and found
the integration during fifteen minutes time before taking the user
image.

3.4.4 Fusion Using Naïve Bayes
We found the mean of the energy data for different affective states
and those means were used as a separate feature for the fusion.
Table 2 summarizes the mean of the energy for different affective
states. Those means were used as the additional feature for our
fusion.

Table 2. Mean of energy for different affective states

Affective State Energy(mean)

Anger 8.56E+00

Disgust 2.24E+01

Fear 4.12E+01

Happy 1.51E+01

Sad 4.28E+00

Surprise 3.56E+01

It is argued that human behaviour is close to that predicted by
Bayesian decision theory [13]. Different probabilistic graphical
model algorithms are used in the literature like Hidden Markov
Model (HMM) and Support Vector Machine(SVM).

In our fusion, we used Bayesian classifier. Since we are working
only on two modalities, we argue Naïve Bayes algorithm would be
a better fit, which performs better with small number of features
and potentially large data for fusion . Fusing the modalities of fa-
cial expression and energy data at decision level enables us to gain
the knowledge about the relationship between these two modalities
for a particular affective state [14].
The Bayesian fusion framework that we apply is proposed in [25].
It uses the conditional error distributions of each classifier to ap-
proximate uncertainty about that classifier’s decision. The com-
bined decision is the weighted sum of the individual decisions.
Given a problem withK classes andC different classifiers,λi,
i = 1, ..., C we like to infer the true class labelω, given the obser-
vationx. Assuming that for each classifierλi we have a predicted
class labelωk, wherek = 1, ..., K then the true class label can be
derived as follows:

P (ω|x) ≈ P (ω|ωk, λi)P (ωk|λi, x)P (λi|x)

ProbabilitiesP (ω|ωk, λi andP (λi|x) are used to weight the com-
bined decision and can be approximated from the confusion matrix
of classifierλi.

We used the energy expenditure data of the same persons from
our facial expression database. When the users simulated affective
state, their energy data was also collected for the last 15 minutes
before taking the photograph.

4. EVALUATION
We evaluated the system in four different ways. Validating the
ground truth, performance of unimodal system with only facial
expression,validating energy data, and performance of the multi-
modal system.

4.1 Validating The Ground truth
After the data collection, each day the participants were interviewed
and asked about their labeling. We found that some data were not
properly labeled. Due to ambiguity of the context, some data were
also discarded. For example, on one occasion PA2 said,‘I was
feeling very good with my grade, but did not have much movement
since I was sitting on my desk. So I labeled the emotion as positive
in valence but negative in arousal and did not know which one to
pick from radio button. So I selected sad.’We only incorporated
the data that the researcher and the PA we agreed on to be of any
particular affective state.

4.2 Unimodal System With Facial Expression
We trained our database with the pictures taken by the camera of
the smart phones. Then for each image in the training database, we
used our classifier for facial expression and found 89% accuracy.
The confusion matrix for facial expression is given in Table 3. We
found that the pictures taken by the camera for which the environ-
ment was dark, the system gave inaccurate results and the image
was not properly classified. We got one inaccurate results for each
of the expression anger, sad, disgust, fear and surprise. From the
result, we conclude that the classifier works well with the training
database as long as the image is taken properly with proper lighting.
It does not depend on any particular expression.

Table 3. Confusion matrix for facial expression classifier

a b c d e f ←Classified as

8 0 0 0 0 0 | a=happy

0 7 0 0 1 0 | b=anger

1 0 7 0 0 0 | c=sad

1 0 0 7 0 0 | d=disgust

1 0 0 0 7 0 | e=fear

1 0 0 0 0 7 | f=surprise

4.3 Validating Energy Data
We used the mean of the energy data for different affective states as
the second feature for our Naïve Bayes fusion. We found an inter-
esting relationship between the energy and the different categories.
Figure 3(a) shows the energy mean for different annotations by dif-
ferent PAs. Each point represents a particular annotation by any

PA. It was difficult to visually distinguish the energy for the dif-
ferent categories. However, for the three categories, namely happy,

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

120

140

160

180

200
 Energy Data for Different Affective State

Number of Instance

A
cc

el
er

om
et

er
 E

ne
rg

y

Happy
Sad
Anger
Fear
Disgust
Surprise

(a)

an di fe ha sa su
0

5

10

15

20

25

30

35

40

45

 Affective State

 E
ne

rg
y

m
ea

n

Mean of energy for different affective states

(b)

Figure 3. Accelerometer Energy for Different Affective State:
(a) Accelerometer energy for six basic emotions. (b) Mean of
energy for different affective state.

sad and anger; we found an important relationship. The mean of
energy of sad is much lower than the mean of the energy of happy
and that of anger. On the other hand, the mean of energy of anger is
not very high where in Russell’s two dimensional space it is consid-
ered higher than the happy state. We conclude, from our data that
happiness usually has a high energy expenditure relative to sadness,
which is in line with Russell’s theory.

This relationship is best shown in Figure 3(b), where we plot only
the mean for different affective states. The horizontal axis repre-
sents different emotional states and the vertical axis represents the
energy mean for the corresponding emotion. We find that sadness
has much lower mean of energy than that of happiness. Also, fear
has high value in arousal space and we found that the mean to be
much higher than happy and sad. This is also in line with the Rus-
sell’s circumplex model where fear is phrased as afraid [Figure 1].

4.4 Performance of Multimodal System
The last part of the discussion addresses the performance of the
multimodal system. We see how our system performs with the
Naïve Bayes fusion. We find that the system performance for cor-
rectly classifying the instances for our training database increases
from 89% to 93%. Out of 48 total instances, 45 were classified cor-
rectly.

A close analysis from the confusion matrix of the multimodal sys-
tem from Table 4 gives us the reason of the improvement.

First, the image previously misclassified as fear instead of anger is
classified correctly now. The reason is that the mean of energy for
anger (8.56E+00) is much lower than that of fear (4.12E+01).As
a result, even if the image was not clear enough, it is correctly
classified. The same reasoning is also true for the data that were
previously misclassified as anger instead of fear.

This data is now also classified correctly. Another interesting ob-
servation is the confusion matrix entry for disgust. One disgust
entry was misclassified in the unimodal system as anger.
In the multimodal system it still is misclassified, but to a differ-
ent class, fear. We observe that the mean of energy for disgust is
equidistant from both anger and fear. As a result, the system could
not find a close match for this annotation.

5. APPLICATION

Table 4. Confusion matrix using Naïve Bayes classifier

a b c d e f ←Classified as

8 0 0 0 0 0 | a=happy

0 8 0 0 0 0 | b=anger

1 0 7 0 0 0 | c=sad

0 0 0 7 0 1 | d=disgust

0 0 0 0 8 0 | e=fear

0 0 0 1 0 7 | f=surprise

The application of the affect detection technology in natural every-
day settings includes a broad range of area. It could be used for
affect sensitive user interface, learning and also for advertisement.
We built a prototype for affect sensitive advertisement in Social net-
working site, Facebook, for a desktop version. Our ultimate goal is
to use the sensors available in smart phones and build a prototype
for affect sensitive advertisement.

Neuropsychologists have looked at human decision making and
found that emotions play a role with simple as well as with complex
choices. This is relatively a new view on human decision making.

Greene et. el. used functional Magnetic Resonance Imaging (fMRI)
on 100 respondents to show how emotions influence what they call
‘Moral Judgements’ [6]. Among the 60 moral judgements studied
in [7], cases have found such as choice between different coupons
to use in a store and the choice between bus and train for travelling
depending on different affective states. Also, according to a study
from eMarketer (October 2009), one-half of Beresford respondents
said they considered information shared on their networks when
making a decision. The proportion was higher among users aged
between 18 and 24, at 65%. This indicates consumers put great
trust in their social networks [1]. For these reasons, we propose
an advertisement model for smart phones using social network that
would capture the in situ affective state of the user and will show
advertisement accordingly. Figure 8 shows a screen shot of the
Facebook application.

6. FINDINGS AND DISCUSSION

6.1 Inherent Theory of Emotion is Not Estab-
lished

The theory of emotion is not established yet. Psychologists have
different approaches to identify different emotions. Research in the
field of affective computing is about finding the features that are
most likely related to emotion-oriented computing. Understand-
ing those ideas and adapting those to any computational methods is
still in progress. Furthermore, expression of emotion greatly varies
from person to person, man and women, and also among different
age groups and races.

Figure 4. Prototype of Facebook application for affect sensitive
advertisement.

Paul Ekman has identified six basic emotions for psychologists to
identify from video sequence using Facial Action Coding System
(FACS). Those are happiness, sadness, disgust, anger, fear and sur-
prise. There are other emotions important for automatic detection
of emotions like boredom, frustration, excitement and many more.
Even Ekman expanded his list of basic emotions to include other
emotions like amusement, contempt, embarrassment, excitement,
guilt, satisfaction etc.

There are also different approaches in computing for different the-
ories in psychology. For Ekman’s FACS to be implemented; fea-
ture extraction is needed from facial image and then it needs to be
classified. However, there are different emotions with overlapping
Coding Schemes which makes the implementation complicated.

For the holistic approach different machine learning algorithms are
used. We have used such an approach.

6.2 Multimodal System Needs More Modali-
ties

In our approach, we have argued that multimodal emotion recog-
nition will contribute to the more accurate affective classification.
For that we might have to put different weights for different modal-
ities. Also, in person to person communication, we may or may
not look for the same features in multiple channels like facial ex-
pression, speech and body movements. More importance might
be needed for finding same emotional cues in multiple modali-
ties. Again, this varies a lot among person to person. People tend
to understand about others emotion from facial expression, tone,
body movement, gestures and most importantly context. Depend-
ing upon context, the interpretation of a message could be quite dif-
ferent from another. A combination of low level features, high level
reasoning, and natural language processing is likely to provide best
multimodal affect recognition. But very few systems have been de-
veloped in a natural environment considering multiple modalities.
Even if they were developed, their performance is measured in a
laboratory environment, which might be quite different than in a
natural environment.

6.3 Privacy
We have argued that affect detection is important but that also comes
with increasing concerns about privacy awareness of the people.
However, this argument can be contrasted with the fact that in our
system, detected affective state is shared only by the permission of

the user. Nevertheless, there remains significant scope for research
regarding privacy issues and different levels of anonymization tech-
niques to be dealt with.

7. CONCLUSION
In this paper we investigate if the sensors of the smart phone can be
used for multimodal affect detection. We also showed an applica-
tion which can be used for advertisement in a social networking site
like facebook. We found that some emotional states are ambiguous
and in many cases people have ’mixed feeling’. In many situa-
tions even human can not identify the emotional states properly.
This is because human might have mixed emotions at a particular
time. There are no borders with different emotional states. How-
ever, still we emphasized on the labeling of the emotion by the PAs.
The success of such systems largely depends on the emotional self
awareness of the PAs. We also suggest that because of overlapping
conditions of affective states, the classification approach should use
probabilistic approaches. Instead of classifying one particular in-
stance to a particular affective state, different probabilities should
be assigned for each instance. We also find arousal to be easily cap-
tured than valence. One such approach might be using pupil size
to capture the information in arousal space, which is an important
indication of arousal in psychology. We believe the large sensor
data captured by the smart phones can be used for machine inter-
pretation of human affective states and machines can understand
part of larger human intelligence. Also, affect sensitive applica-
tions should be developed targeting the application scenario. For
example, the application for advertisement in smart phones may
not be feasible for detecting boredom in a learning environment.
With the continuous advancement of sensor technologies in smart
phones, we can predict human affective states more accurately and
the application of such affect detection technique might be huge.

8. REFERENCES

[1] http://www.bazaarvoice.com/resources/stats.
[2] Boehnen, C., Russ, T. A Fast Multi-Modal Approach to

Facial Feature Detection. InProc. of the Seventh IEEE
Workshop on Applications of Computer Vision, 2005.

[3] Bradley, M. M., Miccoli, L., Escrig, M. A., Lang, P. J. The
pupil as a measure of emotional arousal and autonomic
activation. Center for the Study of Emotion and Attention,
University of Florida, 2008.

[4] DâĂŹMello, S.K., Graesser, A. Multimodal semi-automated
affect detection from conversational cues, gross body
language, and facial features. InUser Modeling and
User-Adapted Interaction archive, volume 20, June 2010.

[5] Fujiki, Y. iPhone as a Physical Activity Measurement
Platform. InCHI 2010(Student Research Competition),
2010.

[6] Greene, J. D., Sommerville, R.B., Nystrom, L. E., Darley, J.
M., Cohen, J. D. . An fMRI Investigation of Emotional
Engagement in Moral Judgement. InScience, volume 293,
September 2001.

[7] Hansen, F., Christensen, S. R. Emotions, Advertising and
Consumer Choice. Copenhagen Business School Press,
2007.

[8] Healey, J. Recording Affect in The Field: Towards Methods
and Metrics for Improving Ground Truth Labels. InProc. of
the Affective computing and intelligent interactions, 2011.

[9] Healey, J., Nachman, L., Subramanian, S., Shahabdeen, J.,
Morris, M. Out of the Lab and into the Fray: Towards
Modeling Emotion in Everyday Life. InProc. 8th
International Conference on Pervasive Computing, 2010.

[10] Hussain, M. S., Calvo, R. A. . Multimodal Affect Detection
from Physiological and Facial Features during ITS
Interaction. InProc. 15th International Conference on
Artificial Intelligence in Education (AIED), June 2011.

[11] James, A., Sebe, N. Multimodal Human Computer
Interaction: A Survey. InComputer Vision and Image
Understanding, volume 108, October 2007.

[12] Kapoor, A., Picard, R. Multimodal Affect recognition in
learning environments. pages 677–682, 2005.

[13] Kording, K.P., Wolpert, D.M. Bayesian decision theory in
sensorimotor control. InTrends in Cognitive Sciences, pages
319–326, 2006.

[14] Metallinou, A., Narayanan, S., Lee, S. Decision Level
Combination of Multiple Modalities for recognition and
analysis of emotional expression. InProc. of the
International Conference on Acoustics, Speech, and Signal
Processing, 2010.

[15] Monwar, M., Prkachin, K., Rezaei, S. Eigenimage Based
Pain Expression Recognition. InInternational Journal of
Applied Mathematics, May 2007.

[16] Nicolaou, A., Pantic, M., Gunes, H. Continuous prediction of
spontaneous affect from multiple cues and modalities in
valence-arousal space. InIEEE Transactions On Affective
Computing, volume 2, 2011.

[17] Pantic, M., Roisman, G., Huang, T., Zeng, Z. A survey of
Affect Recognition Methods: Audio, Visual and Spontaneous
Expressions. InIEEE Transactions on Pattern Analysis and
Machine Intelligence, volume 31, January 2009.

[18] Picard, R. W. Affective Computing. The MIT Press, 1997.
[19] Picard, R. W. Affective Computing: Challenges. In

International Journal of Human-Computer Studies, 2003.
[20] Rabbi, M., Ali, S., Choudhury, T., Berke, E. Passive and

In-situ Assessment of Mental and Physical Well-being using
Mobile Sensors. InProc. of the 13th international conference
on Ubiquitous computing, 2011.

[21] Rime, B., Mesquita, B., Philipot, P. Long lasting cognitive
and social consequences of emotion: Social sharing and
Rumination. InEuropean Review of Social Psychology,
1992.

[22] Rime, B., Philippot, P., Zech, E., Luminet, O., Finkenauer, C.
Social sharing of emotion: New evidence and new questions.
In European review of social psychology, volume 9, pages
145–189.

[23] Russell, J. A. A circumplex model of affect. InJournal of
Personality and Social Psychology, volume 39, 1980.

[24] Scherer, K.R., Ekman, P. Methods For Measuring Facial
Action. In Handbook of methods in nonverval behavior
research, pages 45–135. Cambridge University Press, 1982.

[25] Serre, T., Bouvrie, J., Ivanov, Y. . Error weighted Classifier
Combination for Multimodal Human Identification. InTech.
Rep., MIT, Cambridge, MA, 2005.

[26] Sharma, R., Huang, T., Pavlovic, V. Toward Multimodal
Human Computer Interface. InProc. IEEE, volume 86,
pages 853–869, 1998.

[27] Silva, L. C. D., Ng, P. C. Bimodal Emotion Recognition. In
Fourth IEEE International Conference on Automatic Face

and Gesture Recognition, 2000.
[28] Tian, Y., Cohn, J., Kanade, T. Facial Expression Analysis. In

Handbook of Face Recognition. Springer, 2005.
[29] Tian, Y., Cohn, J., Kanade, T. Affect Detection: An

Interdisciplinary Review of Models, Methods, and Their
Applications. InIEEE Transactions on Affective Computing,
volume 1, 2010.

[30] A. E. K. N. Wagner, J. From Physiological Signals to
Emotions Implementing and Comparing Selected Methods
for Feature Extraction and Classification. InIEEE Int’l Conf.
Multimedia and Expo, pages 940–943, 2005.

[31] M. Weiser. Some computer science issues in ubiquitous
computing. In Communications of the ACM, pages 74–83,
1993.

ABOUT THE AUTHORS:

Mohammad Adibuzzaman is a Doctoral Candidate at the department of Math,
Statistics and Computer Science at Marquette University, Milwaukee Wisconsin. His
PhD thesis is titled ‘Smart Monitoring of Health Parameters’ for which he is
working on algorithm development, system design and mathematical modeling for
innovative healthcare solutions. He received his Masters in Computational Sciences
in 2012 from the same University. Before coming to Marquette, he worked as a
Junior Research Assistant at the Human Computer Interaction Laboratory of
National University of Singapore and as a Software Engineer at a software company
in Bangladesh. He also worked as an Oak Ridge Institute of Science and
Engineering (ORISE) fellow at the U.S. Food and Drug Administration in 2013 by
an appointment to the Research Participation Program at the Center for Devices and
Radiological Health administered by the Oak Ridge Institute for Science and
Education.

Niharika Jain is a Doctoral Student in the Ubicomp Lab at Marquette University.
She received her Master’s degree in Computational Sciences from Marquette
University in 2012. Her interest lies in applying computational approaches in the
area of affective computing. Her research is focused on studying anxiety in children
with Autism Spectrum Disorders. Before joining Marquette, Niharika was working
as a software engineer in one of the leading IT companies in India.

Nick Steinhafel briefly attended Marquette University where he studied Computer
Science and Psychology. He has since relocated to California where he has launched
several successful companies. Nick is currently employed at a startup focusing on
disrupting the health care claim industry.

Dr. Md Munirul Haque is a Postdoctoral Fellow at the Department of Computer and
Information Sciences at the University of Alabama at Birmingham. He holds a Ph.D.
in Computational Sciences and a M.S. in Computer Science from Marquette
University, USA and B.Sc. in Computer Science and Engineering from Bangladesh
University of Engineering and Technology. Dr. Haque has published 20+ peer
reviewed journal, conference and workshop papers. He is the recipient of the Ross
Fellowship Award for outstanding Ph.D. student and 4 best paper/poster awards
(COMPSAC 2007, CHI 2012). His research interest includes mobile security, m-
health, and HCI. He is especially interested in mobile phone based applications to
improve the quality of life of people with special needs.

Ferdaus Kawsar is a Doctoral candidate at the department of Mathematics, Statistics
and Computer Science at Marquette University, Milwaukee Wisconsin. He received
his Master’s degree in Computational Sciences from the same university in 2012.
His interest includes ‘Remote Activity Monitoring’ for which he is working on the
design and development of the system as well as the development and evaluation of
algorithms. Other areas if interest include Time Series Data Analysis, Pervasive
Healthcare and Machine Learning. Before joining Marquette, Ferdaus worked as a
Lecturer in different universities in Bangladesh.

Sheikh Iqbal Ahamed is a professor and director of Ubicomp Lab in the department
of Math, Statistics, and Computer Science at Marquette University, USA. He is also
a faculty member of Medical college of Wisconsin, USA. He is a senior member of
the IEEE Computer Society and ACM. He completed his Ph.D. in Computer
Science from Arizona State University, USA in 2003. His research interests include
mHealth, security and privacy in pervasive computing and middleware for
ubiquitous/pervasive computing. He has published 100+ peer reviewed journal,
conference and workshop papers including seven best paper/posters. Dr. Ahamed
serves regularly on international conference program committees in software
engineering and pervasive computing such as COMPSAC 13, COMPSAC 12,
PERCOM 08, and SAC 08. He is the Guest Editor of Computer Communications
Journal, Elsevier.

Dr. Richard Love is now retired from positions as a professor of medicine (in
medical oncology) at the University of Wisconsin (1976-2005), and then a professor
of medicine and epidemiology/biostatistics at The Ohio State University (2005-
2011) and as a senior adviser at the National Cancer Institute (2007-2011). He is
currently scientific director of the International Breast Cancer Research Foundation,
an organization he began in the early 1990s, and a leader in health and a social
entrepreneur for Amader Gram, a non-governmental organization in Bangladesh. He
has suggested the term “Public health oncology” in writing about our need to focus
more on populations in our global cancer activities. He is currently developing
detailed plans and raising international support for the Amader Gram Cancer Care
Initiative—a Bangladeshi rural population-cancer health-directed series of 8 social
businesses based in 5 new buildings.

	ACR 13-4 (FRONTMATTER)
	ACR 13-4 (papers)
	Po-Chun Huang
	Po-Chun Huang_BIO
	ABOUT THE AUTHORS:

	Jesper Pedersen Notander
	Jesper Pedersen Notander_BIO
	ABOUT THE AUTHORS:

	Minhaz Zibran
	Minhaz Zibran_BIO
	ABOUT THE AUTHORS:

	Shubhamoy Dey
	1. INTRODUCTION
	2. RELATED WORK
	3. METHODOLOGY
	3.1 Support Vector Machine (SVM)
	3.2 Boosting Algorithms
	3.2.1 Bagging
	 (3)
	3.2.2 Boosting
	3.2.3 Adaptive Boosting (AdaBoost)
	 (7)

	3.3 Boosting for Constructing SVM Ensemble
	3.3.1 Aggregation Strategies for SVM Ensemble

	4. EXPERIMENTAL EVALUATION
	4.1 Corpora and Sentiment Lexicons
	4.2 Performance Evaluation
	4.3 Experimental Results
	4.3.1 Results on Movie Reviews Dataset
	4.3.2 Results on Hotel Reviews Dataset

	5. DISCUSSION
	6. CONCLUSION
	7. ACKNOWLEDGMENTS
	8. REFERENCES

	Shubhamoy Dey_BIO
	ABOUT THE AUTHORS:

	Tomas Cerny
	Tomas Cerny_BIO
	ABOUT THE AUTHORS:

	Adib Zaman
	Introduction
	Contributions

	State of the Art
	Our Approach
	Selecting Modalities
	Emotion Journaling
	Journaling Training
	Algorithm Design
	Face Detection
	Affective State from Facial Image
	Energy Expenditure from Body Movement
	Fusion Using Naïve Bayes

	Evaluation
	Validating The Ground truth
	Unimodal System With Facial Expression
	Validating Energy Data
	Performance of Multimodal System

	Application
	Findings and Discussion
	Inherent Theory of Emotion is Not Established
	Multimodal System Needs More Modalities
	Privacy

	Conclusion
	References

	Adib Zaman_BIO
	ABOUT THE AUTHORS:

